

Process HEAT PROGRESS REPORT

Lauren Ayers

Sarah Laderman

Aditi Verma

Anonymous student

Outline

- System Diagram
- Heat Exchangers
- Compressors
- Heat Transport
- Heat Storage
- Required Inputs

System Diagram

Printed Circuit Heat Exchangers (PCHEs)

T_{high}= 800°C P_{high}=20 MPa

PCHEs chosen for their:

- •High operating temperatures
- •Small volumes
- •High effectiveness

Fig. 1 (pg. 218) from D. Southall, and S. J. Dewson, Innovative Compact Heat Exchangers. Published in ICAPP 2010, San Diego, CA, June 13-17, 2010. © American Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

System Diagram- Initial Design

Process Heat System

- Eliminated a PCHE, F-He heater and
- isolated a PCHE
- reduced the number of dependent variables in the Process heat loop

PCHE locations

Fluid {5MPa; [200C, 700C]}	Heat Capacity	Viscosit y	Boiling Temp.	Special Issues	
Carbon Dioxide (CO ₂)	[1.0795, 1.2378]	[1.35*10-4, 3.678*10-5]	263.94 C		
Water/Stea m (H ₂ O)	[4.4761, 2.3515]	[2.337*10-5, 4.064*10-5]	14.28 C	Want to avoid two- phase flow	
Helium (He)	[5.1889, 5.1906]	[2.74*10-5, 4.533*10-5]	-264 C	costly due to He shortage	

Source: webbook.nist.gov/chemistry/fluid

Massachusetts Institute of Technology

Considerations included:

- •Tensile strength
- Thermal conductivity
- Thermal expansion
- Corrosion resistance
- •Ease of manufacturing process
- •Design life of up to 60 years

Alloy 617

nickel-chromium-cobalt-molybdenum Ultimate Tensile Strength at 650C = 627 MPa Coefficient of thermal expansion, [20-760]C = 15.1um/m-C Thermal conductivity at 650C = 23 W/m-K

Alloy 617 Stresses

Fig. 1. Maximum allowable stresses of alloy 617.

Pmax = 20 MPa at core HX, T=630C Tmax=800C at hydrogen HX, P= 3MPa

Heat Exchangers would be operating well below design stress at all points in system

Source: Li, Xiqing., et al. "Alloy 617 for the High Temperature Diffusion-Bonded Compact Heat Exchangers." Published in ICAPP 2008, Anaheim, CA, June 8-12, 2008. © American Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

PCHE nodal model

Model assumptions:

- •The total mass flow rate is uniformly distributed among the channels
- •The wall channel temperature is uniform at every axial node
- •Cold and hot plates have the same number of flow channels

Code divides a single channel into nodes of equal length and iterates to optimize the channel length

V. Dostal , "A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors", MIT PhD thesis (2004)

35MW Intermediate Heat Exchanger

hot fluid: S-CO2 cold fluid: He d_{hot} =5mm d_{cold} = 6mm counterflow Zigzag channels θ =45 C

Thotin = 630° C Tcoldout=606.5° C mflowcold=22 kg/s (constrained by Tcoldout)

- Reynolds number and pressure drops as a function of the mass flow rate of the hot fluid
- Hot fluid is in the turbulent flow regime
- Cold fluid is in the laminar flow regime

Cold Fluid reynolds number

----Hot fluid reynolds n

Pressure drop

PCHE volume

PCHE volume

- Heat exchanger volume decreases with an increase in the CO₂ mass flow rate
- Smallest possible volume is desirable due to high costs of materials and fabrication
- PCHEs cost upwards of \$ 500,000/unit and cost is proportional to volume
- A straight channel PCHE with a CO₂ mass flow rate of 90 kg/s has a volume of 15.367m³ For the same mass flow rate, a zigzag channel PCHE is 54.4% smaller.

Future Heat Exchanger Work

- Optimize the heat exchangers given inputs and outputs from biofuels, core, and hydrogen subgroups; choose between straight and zigzag PCHE channels
- Determine our HX^s design lifetime
- Plan maintenance and repairs schedule – online management possible?
- Introduce an emergency heat sink, alternate "reserve" working fluid for rapid cooling?

Source: Li, Xiqing., et al. "Alloy 617 for the High Temperature Diffusion-Bonded Compact Heat Exchangers." Published in ICAPP 2008, Anaheim, CA, June 8-12, 2008. © American Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Compressors

- Needed to keep helium flowing
- Pressure ratio & thermal efficiency given by manufacturer
- To find outlet temperature:

$$n = \frac{W_{ideal}}{W_{real}} = \frac{h_{out,ideal} - h_{input}}{h_{out} - h_{input}}$$

Where: $h = c_p * T$

- Specific compressor chosen after pressures are determined
- Paper by Hee Cheon No, Ji Hwan Kim, and Hyeun Min Kim compares many high temperature & pressure compressors
- Pressure ratios from 1.7 2
- Machine efficiencies from 90-98%

No et al. "A Review of Helium Gas Turbine Technology for High-temperature Gas-cooled Reactors." *Nuclear Engineering and Technology*, Vol. 39, No. 1 (2007).

Transport

- Alloy 617 for helium piping material
- Stainless steel heat pipe for water transport
- Need warmest possible atmospheric temperature
- Once site is determined, look at heat loss and determine pipe thickness
 - Equations from 22.06 notes, modeling each section as a resistor from q'_{center} to $T_{atmospheric}$

Safety Distances

Image by MIT OpenCourseWare.

- Area F: no limits
- Area E: no housing
- Area D: Design buildings for a peak incident gauge pressure between 1.5 & 3 psi. Roof to be independently supported & windows protected. No public roads.
- 30 m in between plants
- 175 m from public roads
- 360 m from housing

PCM: Lithium Chloride (LiCl)

Property	Value
Melting Point	605°C
Δh° fusion	470 kJ/kg
c_p (solid)	1.132 kJ/kg-K

Public domain (Wikipedia)

Containment Material: Alloy 20

- Nickel-Chromium-Molybdenum alloy
- Resistant to chloride ion corrosion
- MP >1380° C
- k = 18.15 W/m-K

© Best Stainless & Alloys. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://www.beststainless.com/alloys/alloy-20.html

Chemical Composition, %											
	Ni	Cr	Мо	Mn	Cu	Si	С	S	Р	Cb+Ta	Fe
MIN	32.5	19.0	2.0	-	3.0	-	-	-	-	8.0 × C1.0	-
MAX	35.0	21.0	3.0	2.0	4.0	1.0	0.06	0.035	0.035	-	Balance

Image by MIT OpenCourseWare.

Charging Layout

Discharging Layout

Institute of Technology

Storage – Heat Exchanger

To core

primary

Storage – Heat Exchanger

Assumptions

- Heat stored in PCM as latent heat only
- No convection within PCM
- L(pcm) ~= L(slab)
- t(pcm) << L(pcm)
- Helium temperature isothermal for any given "x"

Next Steps for Storage

- Determine geometry
 - Determine mass of PCM needed
- Calculate Re, h of helium, Biot number
- Thermal analysis of PCM and containment
- Pressure drop across HX
- Charging and discharging data

Required inputs

- Mass flow rate of lead bismuth during shutdown
- Temp lead bismuth should be heated to using stored heat
- Time between shutdown and heating lead bismuth
- Maximum time for heating lead bismuth

Questions?

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.