Hydrogen Production Progress Update

October 5, 2011 22.033 Fall

Rebecca Krentz-Wee Derek Sutherland Ben Nield Lauren Chilton

Presentation Outline

Objectives

Hydrogen economy viable?

Options

- Steam Methane Reforming (SMR)
- Westinghouse Sulfur Process (WSP)
- Water Electrolysis (ES)
- HT Steam Electrolysis (HTSE)
- Sulfur-Iodine (S-I)
- Br-Ca-Fe (UT-3)
- Bacteria / Urine

Comparison

Hydrogen economy viability?

Chemical Properties

- Difficult to contain in gaseous forms
- Parasitic energy losses
- Cryogenics required for best storage
- Safety concerns

Infrastructure Overhaul

 Multi-billion dollar distribution framework required

Conclusion: A hydrogen economy is not technically or economically viable in the relatively near future.

Engineering Objectives

Hydrogen Production

0.1 kg/s at STP

Required Temperature < 800 C

Power Consumption

Environmental Impact

Zero Greenhouse Emissions

< 150 MW

Options - Steam Methane Reforming

Konopka, Alex J., and Gregory, Derek P. "Hydrogen Production by Electrolysis: Present and Future." Institute of Gas Technology, Chicago IL. IECEC 1975 Record.

Options - Westinghouse Sulfur Process (WSP)

Courtesy of Edward J. Lahoda. Used with permission.

Options - Water Electrolysis

Konopka, Alex J. and Gregory, Derek P. Hydrogen Production by Electrolysis: Present and Future. Institute of Gas Technology, Chicago, Illinois 60616. IECEC 1975 Record.

Konopka, Alex J. and Gregory, Derek P. Hydrogen Production b Electrolysis: Present and Future. Institute of Gas Technology, Chicago, Illinois 60616. IECEC 1975 Record.

Options - HT Steam Electrolysis

Konopka, Alex J. and Gregory, Derek P. Hydrogen Production by Electrolysis: Present and Future. Institute of Gas Technology, Chicago, Illinois 60616. IECEC 1975 Record.

U.S. DOE factsheet for high-temperature electrolysis

HTSE Advantages

- High efficiency (enthalpy of steam vs water)
- No pollutants
- Uses reactor heat
- Simple chemistry
- Improvement with temperature

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Options - Sulfur-Iodine Cycle

Advantages

- Commercial scalability
- No greenhouse emissions
- Cheap reactants

Disadvantages

- Very high temperatures required (850 C +)
- Material concerns due to aggressive chemistry
- Heat exchanger design limitations at high temperatures
- Process efficiency limited to roughly 34-37%

A. Aochi et al., Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant. *Int. J. Hydrogen Energy*, 14(7):421–429, 1989.

Options - Br-Ca-Fe (UT-3)

Advantages

- Can occur at a lower temperature than the sulfur-iodine process
- Commercially scalable method of hydrogen production
- No greenhouse gases produced

Disadvantages

- Efficiency limited to $\sim 40\%$, but a soft limit
- Material concerns, though not as prominent as SI
- Higher temperature than core output is required

Options - Bacteria

• Dark fermentation is most commercially viable approach of bacterial hydrogen production.

Advantages

- Low temperatures required
- Limited material concerns

Disadvantages

- Uncertainty on scalability due to limited research
- Expensive strains required
- Contamination concerns
- Large volume of bacteria mixture required

Options - Urine

- Breaking down urea into hydrogen
- Storage and transport of human waste
- Hydrolyzes over time-->fast process needed
- Large volume of waste needed

Comparison of Processes

Process	Materials	Temp [°C]	Pressure [atm]	Efficiency [%]	Feasibility
ES	Water, Electrolytes, Anode/Cathode	~100	1	25-45	drastic scaling needed
HTSE	Ceramics	500+	1	90+	only small scale
SI	Ceramics	850+	1-10	34-37	commercially viable, but too high temp
SMR	Nickel catalyst	700-800	1-3	70	commercially viable, but polluting
UT-3	Ceramics	760	1	40+	commercially viable

Final Decision: UT-3 Process

- Well demonstrated over three decades
- Minor material concerns
- Commercially viable
- Reasonable temperatures required
- No greenhouse emissions
- Relatively cheap reactants

Next Steps

- Scale/capacity
- Hydrogen storage/reserves
- Material concerns
- Transportation to biofuels

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.