
22.033 Core Group- Reactor Concept and Decision Making Process

Robert Drenkhahn Brendan Ensor Jessica Hammond Ruaridh Macdonald

22.033 Fall 2011

Final Decision

Reactor Concepts

Choice Justification

• Moving Forward Advanced Nuclear CORE Squad

Final Decision

Lead Cooled Fast Reactor

Supercritical CO2 Secondary Loop

 Looking at range of sizes >500 MWe (designed to diminishing returns to scale)

Advanced Nuclear CORE Squad

Reactor Concepts

- Supercritical Water/CO2
- Travelling Wave
- Molten Salt
- CANDU
- Very High Temperature Reactor (VHTR)
- Sodium Fast Reactor (SFR)
- Lead Fast Reactor (SFR)

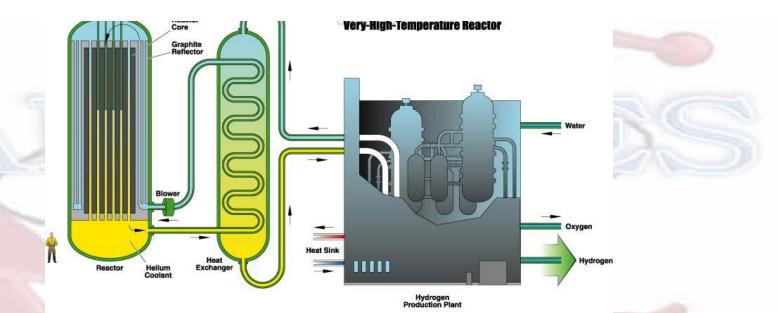
Advanced Nuclear CORE Squad

Supercritical Coolant Reactor

- Supercritical Water Reactor
 - One of the Gen IV reactor designs
 - Excellent heat transfer, no boiling in core
 - <u>– 20 MPa, 550°C</u>
 - High Thermal to Electric Efficiency (~45%)
 - Very simple BWR-esque design
 - Materials concerns
 - Supercritical CO₂ Options

Travelling Wave Reactor

- Breed and Burn concept
 - Start with some enriched Uranium to get core critical at some location
 - Then through neutron absorption U-238 becomes Pu-239 which then fissions causing the same thing to more U-238
- Long life, on-line refueling
- Potential to use "unwanted" fuel
- Proliferation concern
- Not the temperatures we were looking for


Molten Salt

- Able to scale to many desired power levels
- No high pressure eliminates need for a pressurizer
- Extremely high negative temperature coefficient
- Breeder Reactor with Thorium would be extremely cost effective
- Many hazardous materials such as HF and Be

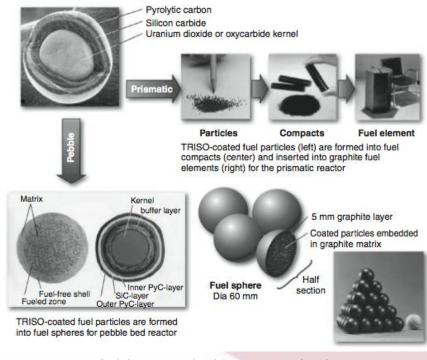
CANDU

- Able to use various plentiful sources of fuel
- Heavy Water Moderator is an expensive capital cost
- Moderator is unpressurized, thinner fuel bundle tubes
- Already operational in several nations
- Temperature Requirements for this project
- d were too high for CANDU CORE Squad

Very High Temperature Reactor (VHTR)

(http://www.gen-4.org/Technology/systems/vhtr.htm)

Courtesy of Idaho National Laboratory. Used with permission.


Quick Facts:

- Primary Coolant: Helium
- Moderator: Graphite
- Neutron Spectrum: Thermal
- Outlet Temperatures: up to 1000°C

- Neutron Spectrum: Thermal
- Efficiency: >50%
- Fuel Options: Spherical or Prismatic

Very High Temperature Reactor (VHTR)

22.033 Fail 2011

Notable Features:

- Coated Fuel Particles
- Passive Safety Features
 - Very High Temperatures

Courtesy of Idaho National Laboratory. Used with permission.

SFR and LFR Designs

•<u>General</u>

- Fast spectrum possible intergration into closed fuel cycle
- Excellent thermal properties
- Large heat sink, easier cooling, small footprint,
- Low pressure
- Passive safety

<u>SFR</u>

Minimal moderation Low melting point Operational experience

Volatile material Some activation

<u>LFR</u>

11

Minimal moderation High boiling point Range of scales Higher temp. possible

Difficult start-up Some activation Minimal US experience

Comparison

Neutronics Both very good Minimal moderation and voiding, burn actinides Could have positive breeding ratio Na and LBE both activate

Thermal

Sodium probably slightly better Lead requires >328 °C start-up

<u>Other</u>

Lead isn't as volatile No intermediate loop required w/ lead Lead can corrode steel

Reactor Design Choice Reasoning

- Compact Size/Small Footprint
- Safety Features
- Thermal Properties
- Variety of Power Levels
- Exotic Design- Questions to be answered/Interesting to work on
- Natural Circulation Possibilities

Advanced Nuclear CORE Squad

Looking Forward- Core

• Lead vs. Lead-Bismuth Coolant

Begin Modeling Reactor in MCNP

Reactor Power Decision

Material Choices
Advanced Buclear CORE Squad

22.033 Fail 2011

Looking Forward- Plant

Lead to CO2 Heat Exchanger

Supercritical CO2 Viability

Turbines

Split point for Process Heat

22.033 Fail 2011

QUESTIONS?

Advanced Nuclear CORE Squad

22.033 Fail 2011

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.