

22.033 Design Course

Considerations in Designing a Nuclear Power Plant with a Hydrogen and Biofuels Facility

- Green energy policy climate
- Oil quickly depleting
- Nuclear high energy/electricity output versus maintenance costs

Reactor Core

1. Goals

- 2. Overall Design of Reactor Core
- 3. Radial and Axial Overview of Core
- 4. Fuel
- 5. Heat Removal
- 6. Core Depletion
- 7. Secondary System
- 8. Turbines and Heat Exchangers
- 9. Future Work

- Provide enough electricity and process heat for hydrogen and biofuels production
- Choose and design a reactor that will operate at temperatures larger than what is in use
- Produce a unique and innovative reactor
- Final design must be feasible for electrical production

- Supercritical H₂O
- Supercritical CO₂
- Traveling Wave Reactor
- Sodium-Cooled Fast Reactor (SFR)
- Lead-Cooled Fast Reactor (LFR) (LBEFR)

- CANDU Reactor
- Molten Salt Reactor
- Gas-Cooled Fast Reactor
- Pebble Bed Modular Reactor (PBMR)
- Very High Temperature Reactor (VHTR)

- Lead-Bismuth Eutectic Cooled Fast Reactor (LBEFR)
 - High heat capacity
 - Operates at ~ atmospheric pressure
 - High power density
 - Natural convection
 - Self-shielding
 - Essentially no coolant voiding possible

- Supercritical Carbon Dioxide (S-CO₂) for Secondary Cycle
 - Brayton cycle
 - Single phase working fluid
 - Smaller turbines
 - Higher cycle efficiency

- Lead-Bismuth Eutectic (LBE) Cooled Fast Reactor with Supercritical CO₂ Secondary Loop
- 3575 MWt (1500 MWe)

Limited by velocity of LBE (2.5 m/s) due to flow assisted corrosion

Will provide only 1000 MWe to grid, remaining energy will be used for hydrogen and biofuel production

Radial Overview of Core

Pitch/Pin = 1.6

Axial and Radial Zoning

	Rings 1-4	Rings 5-10
Тор 33%	10%	12.5%
Lower 67%	12.5%	15%

Outlet Temperature	650° C
Inlet Temperature	484° C
Operating Pressure	Atmospheric
Full Power Operating Mass Flow Rate	143,600 kg/s
Max Fuel Enrichment	15%
Minimum Fuel Enrich	10%
Linear Heat Rate BOL	74.3 kW/m
Fuel Material	UN

K-effective vs. Rod Withdrawal Percentage

Selected Temperatures Over a 1 Meter Active Fuel Height at 3575 MW

	UN	UO ₂
Thermal Conductivity	21 W/mK	3-4 W/mK
Melting Point	2800° C	2800° C
Uranium Metal Density	13.60 g/cm ³	9.67 g/cm ³
Other	Need to enrich the nitrogen	Long and safe operating history

- Natural circulation appears sufficient for heat removal at full power.
- It is likely that pumping power/ extra heat insertion from the PCM will be needed to maintain flow during shutdown.
- Further analysis needed to determine benefits of laminar vs. turbulent regimes.

Plot of mass flux vs. inlet temperature given an outlet temperature of 650° C for varying down channel diameters. R = 3m. B = 2m. G = 1m

- Analysis done by comparison to previous cores: EISY, STAR & 2400MWt MIT design
- 24000 MWt achieved 1800 days lifetime with k_{eff} = 1.02 at BOL with rods removed.
- Likely that our reactor can achieve longer given greater fertile inventory and k_{eff} = 1.04 at BOL with rods removed.
- Needs formal core depletion code analysis

	Zone 1 (kg)	Zone 2 (kg)	Zone 3 (kg)	Total (kg)
BOL Pu	3342	2807	1982	8131
EOL Pu	3375	2849	2044	8268
% change	0.99	1.50	3.13	1.68
BOL U	19356	16254	11476	47086
EOL U	17935	14568	10154	42657
% change	-7.34	-10.37	-11.52	-9.41
BOL MA	516	433	306	1255
EOL MA	423	316	214	953
% change	-18.02	-27.02	-30.07	-24.06

Estimated inventory changes from 2400MWt MIT core after 1800 days

- Estimated again from ELSY, STAR and MIT cores
- Doppler coefficient was found to be -0.111+/-0.03 for MIT core
 O Hard spectrum makes this less negative than other LMFBR cores
- Temperature coefficient was found to be +0.131 +/-0.052 for MIT core

 Reactivity insertion at low lead densities not countered by increased
 scattering and leakage cross sections at higher temperatures.
- Needs to be explicitly calculated for our core. Use of MgO reflector has reduced our required enrichment which may change these values significantly based on work by Driscoll et al.

- Electric Power
 - ≻ 1000 MWe
- Plant Power
 - ≻ 500 MWe
- Process Heat
 - ≻ 315 MWt

S-CO2 Secondary Loop

Modeled in EES

> Temperature and mass flow calculations

> Allows for faster optimization

> Database provided enthalpy information for S-CO₂

- Second turbine added to allow for greater efficiency
- Energy diverted to the Process Heat group does not significantly affect the secondary system (efficiency changes from 45.8% to 42.2%)

- Simple design (easy to make, low cost, etc.)
- Larger than PCHE
- Friction effects of LBE reduced

- Compact due to Brayton Cycle
- Reduces size of turbomachinery

Source: Dostal, V. "A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors." MIT Sc. D. Thesis, January 2004.

- Switch to alternate clad material or lower operating temperature OR both.
- Look at efficiency improvements in secondary system.
- Look at Uranium Carbide as alternate fuel.
- Full depletion and kinematic calculation.
- Determine if decay natural convection possible.

Process Heat

1. Goals

- 2. Heat Exchangers
- 3. Piping
- 4. Heat Storage
- 5. Future Work

- Draw heat from the Core to provide steam to the Hydrogen and Biofuels plants
- Keep the LBE melted during reactor outage
- Design system for operation at high temperatures and pressures

System	component	Pressure drop [kPa]	Temperature change [° C]
PCHE1	Hot side	8.043	-316
	Cold side	23.749	+405.47
PCHE2	Hot side	9.812	-388
	Cold side	13.874	+518.67
Hea	t storage	1000	-1.5
Pipi	ng (30m)	2.047	-0.041

Fig. 1 (pg. 218) from D. Southall and S. J. Dewson, "Innovative Compact Heat Exchangers." Published in ICAPP 2010, San Diego, CA, June 13-17, 2010. © American Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Fluid at 5MPa [200°C, 700°C]	Heat Capacity [J/kg-K]	Viscosity [Pa-s]
Carbon Dioxide (CO ₂)	1079.5, 1237.8	2.337 10 ⁻⁵ , 4.064 10 ⁻⁵
Water/Steam (H ₂ O)	4476.1, 2351.5	1.35 10 ⁻⁴ , ₅ 3.678 10 ⁻
Helium (He)	5188.9, 5190.6	2.74 10 ⁻⁵ , ₅ 4.533 10 ⁻

***data from webbook.nist.gov

Source: Li, Xiqing., et al. "Alloy 617 for the High Temperature Diffusion-Bonded Compact Heat Exchangers." Published in ICAPP 2008, Anaheim, CA, June 8-12, 2008. © American Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Reasons for choosing Alloy 617:

- •Tensile strength
- Thermal conductivity
- •Thermal expansion
- Corrosion resistance
- •Ease of manufacturing
- •Design life of up to 60 years

PCHEs will operate well below design stresses at all points in system

Parameter	PCHE1	PCHE2
Heat rate/unit	35 MW	26 MW
Number of units	9	12
Total heat rate	315 MW	312 MW
Hot fluid	S-CO ₂	He
Cold fluid	He	H ₂ O
Channel configuration	zigzag	straight
location	S-CO ₂ loop	Hydrogen plant
Total htc	1087.71 W/m ² K	735 W/m ² K
Volume	8.25 m ³	15.6 m ³

*HEATRIC's quote for steel \$/kg cost used

PCHE1: Temperature and Heat Flux Profiles

- Zigzag flow channels
- Counterflow
- Single-phase forced convection
- No swings in temperature or heat flux
- S-CO₂: turbulent
- He: laminar

PCHE1: Temperature and Heat Flux Profiles

- Straight channels
- Counterflow
- Two-phase flow
- Unphysical behavior to the left of x=0.68m
- Exclude this region
- Both fluids laminar
- Large swings in temperature and heat flux!
- Design as three separate HXs?

Fouling affects heat rate and pressure drops

PCHE operation up to 500 – 660 hours:

- no change in effectiveness
- 55% increase in pressure drop!

18 month fuel cycle = \sim 12,960 hours

Solutions:

- Installation of redundant units
- Addition of CI to fluid streams to reduce biofouling

Biofuels Heat Exchanger

- Recover heat from $H_2O + H_2$ and O_2 streams at the Hydrogen plant
- Produce steam at 182° C and 0.1MPa for Biofuels
- Highly oxidative and reductive environment!
- Prospective materials: RBSiC and SiSiC

Courtesy of Acumentrics Corporation. Used with permission.

Ceramic monolith for ascross flow HX fabrication

Source: Litka, A. F. Presentation slides for "Ceramic/Metallic Heat Exchanger Development." 9th Annual SECA Workshop, Pittsburgh PA, 2008. (PDF)

Adapted from tests and design in "Conceptual Design for a High Temperature Gas Loop Test Facility." Idaho National Laboratory Report INL/EXT-06-11648, 2006

PCM: Lithium Chloride (LiCl)

Property	Value	
Melting Point	605° C	
Δh° fusion	470 kJ/kg	
c_p (solid)	1.132 kJ/kg-K	

Source: http://en.wikipedia.org/wiki/File:Lithium_chloride.jpg (public domain image)

Containment Material: Alloy 20

Nickel-Chromium-Molybdenum alloy

Resistant to chloride ion corrosion

MP >1380° C

k = 18.15 W/m-K

	Min (%)	Max (%)
Nickel	32.5	35.0
Chromium	19.0	21.0
Molybdenum	2.0	3.0
Manganese	0.0	2.0
Copper	3.0	4.0
Silicon	0.0	1.0
Carbon	0.0	0.06
Sulfur	0.0	0.035
Phosphorus	0.0	0.035
Niobium	1.0	none
Iron	0.0	balance

Adapted from: http://www.rolledalloys.com/products/nickel-alloys/alloy-20

Charging Time (with 67 MW preheater): 33 days, 12 hours

Storage: LiCI leak

• Reroute He flow around storage and compressor

Heat Sink

- Average Decay Heat from core \rightarrow process heat 1 hr after shutdown: 5MW
- Maximum temperature change of water : 10° C
- Volumetric flow rate of seawater : 455 gallons/second
- Ti plate type HX specifically for marine applications
- Outlet diffusers to reach thermal equilibrium quicker/minimize environmental impact

- Compare PCHEs with Shell and Tube designs
- Split PCHE2 into multiple stages
- PCHE fouling factors
- Correction factors for determining CHF values for semi-circular channels
- m_{dot}(t) of LBE
- Ensure that ΔT of 10° C is enough to keep LBE molten even for lowest m_{dot}
- Effects of a support system on He flow
- Insulation: steady state and during shutdown

Hydrogen Production Plant

- 1. Engineering Objectives
- 2. Options for Hydrogen Production
- 3. UT-3
 - Plant Diagram
- 4. HTSE
 - Plant Diagram
 - Materials
- 5. Future Work

- Meet biofuel's hydrogen requirement
- Maximize use of process heat
- Minimize electricity use
- Zero greenhouse emissions

Options for Hydrogen Production

Process	Materials	Temp [°C]	Efficiency [%]	Feasibility
ES	Water, Electrolytes, Anode/Cathode	~100	25-45	Drastic scaling required
HTSE	Solid Oxide Electrolysis Cell	>500	90-95 (at 800°C)	Only small scale
SI	Ceramics	>850	34-37	Commercially viable, but too high temp
SMR	Ni catalyst	700-800	60	Commercially viable, but polluting
UT-3	Ceramics, chemical reactants	760	>40	Commercially viable

ES: Water Electrolysis HTSE: High Temperature Steam Electrolysis SI: Sulfur-Iodine Process SMR:Steam Methane Reforming UT-3:University of Tokyo-3 (Ca-Br-Fe Thermochemical Cycle)

 $CaBr_2(s) + H_2O(g) \to CaO(s) + 2HBr(g) (760 C)$ $CaO(s) + Br_2(g) \to CaBr_2(s) + 0.5O(g) (571 C)$

 $Fe_3O_4(s) + 8HBr(g) \rightarrow 3FeBr_2(s) + 4H_2O(g) + Br_2(g) (220C)$

 $3FeBr_2(s) + 4H_2O(g) \rightarrow Fe_3O_4(s) + 6HBr(g) + H_2(g)$ (560 C)

Bromination of calcium oxide, acidity, leads to ulletmaterial concerns.

¹H.Kameyama and K. Yoshida. Br-ca-fe water decomposition cycles for hydrogen production. Proc. 2nd, WHEC., pages 829–850, 1978.

UT-3 Hydrogen Production Process¹

Image adapted from: Sakurai, M.

"Adiabatic UT-3 Thermochemical Process for Hydrogen Production". Energy. 2(10), 865-870 (1996).

- Necessary steam temperature could no longer be provided.
- Electric power required larger than reactor output.
- New hydrogen production design required

Image from: U.S. DOE fact sheet for high-temperature electrolysis

Solid Oxide Electrolysis Cell (SOEC)

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Material Requirements

Electrolyte:

- Dense
- Chemically stable
- High ionic conductivity
- Gas-tight (no H-O recombination)
- Thin (minimize Ohmic resistance)

Electrodes:

- Porous, allows gas transportation
- Similar thermal expansion coefficient to electrolyte

Electrolyte Material

Name	Туре	Ionic Conductivity (S/cm)	Optimal Temperature (K)	Comments	
YSZ	Stabilized zirconia	0.13	1273	Overall best choice	
ScSZ	Stabilized zirconia	0.18	1273	Exorbitant cost	
LSGM	Doped LaGaO ₃	0.17	973	Requires reduced operating temperature; problematic reaction between LSGM and Ni	
GDC	Ceria-based oxides	0.10	1073	Chemically unstable	
SDC	Ceria-based oxide	0.08	1073	Chemically unstable	
BaCeO ₃	Proton-conducting electrolyte	0.08	1073	Low conductivity	

HTSE with Regenerative Heating

22.033

- Determine electrical requirement to better accuracy.
- Possibly simulate HTSE plant to address efficiency.

Biofuels Production Plant

1. Goals

- 2. Overall Design of Biofuels Plant
- 3. Switchgrass
- 4. Gasification
- 5. Acid Gas Removal
- 6. Fischer-Tropsch Reactor
- 7. Distillation and Refining
- 8. Final Products and Concluding Thoughts

- Produce biofuels
- Large scale
- High quality
- Use nuclear power plant
 - Process heat
 - Electricity
- Hydrogen production plant

Choice of Biomass

Feedstock Comparison

	Current Cost (\$/ton	Energy Density (MJ/kg)	Agriculture Yield (tons/acre)	Food Source?
Switchgrass	\$40	17	11.5	no
Sorghum	\$40	17	20	yes
Energy Cane	\$34	13	30	no
Sugar Cane	\$34	13	17	yes
Corn	\$40-50	13.5	3.4	yes
Algae			58700 L/ha	no

64

Optimal Growing Locations in U.S.

Map courtesy of Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy.

Optimal Growing Location in Texas

Map produced by the National Renewable Energy Laboratory for the U.S. Department of Energy.

Growth and Transportation

- Outsource to local farmers \rightarrow job creation
- Quantity: 2903 tons/day \rightarrow
 - 85 flat bed trucks/day carrying 33.3 tons each
 - 13 closed hopper cars at full capacity
- Pelletize to 1300 kg/m³

Gasification

Rentech Silvagas Dual Fluidized Bed Cycle

Gasification

Inputs and Outputs

Composition of Syngas (by volume):

Estimated flow rates calculated using http://chippewa.gtsav.gatech.edu/outreach/workshop/presentations/gfarris.pdf & Twin-Bed Gasification Concepts for Bio-SNG Production (Paisely)

Acid Gas Removal Output

Composition of Input to F-T Reactor

Slurry Phase Bubble Column Design

 $CO + 2H_2 \rightarrow -(CH_2) - H_2O + 170 \, kJ$

$H_2O + CO \to CO_2 + H_2$

- Fe catalyst
- Heat generated: 21.8 MW

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Product Selectivity

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Fischer-Tropsch Reactor

Reactor Outputs

Carbon Content	Product Classification	Mass Flow (kg/s)
C ₁ - C ₅	Light Gas	2.02
C ₅ - C ₁₂	Naphtha (Gasoline)	5.09
C ₁₂ - C ₂₀	Distillate (Biodiesel)	2.65
C ₂₀₊	Heavy wax	1.46

HEAT EXCHANGER- cooling, condensation	Fraction	Boiling Point (°C)
SEPARATOR SEPARATOR SEPARATOR SEPARATOR SEPARATOR SEPARATOR SEPARATOR Tray 5 Tray 4 Tray 3 Tray 2	Light Gases	< 40
	Light Naptha	30-90
	Heavy Naptha	90-200
HEAT EXCHANGER	Distillate	200-300
BOTTOM PRODUCT	Heavy Wax	300-350

Hydrogen Inputs

© ACS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Product Classification	Mass Flow (kg/s)	Mass Flow (barrels/day)
Light Gas	2.02	
Diesel	2.87	1874
Gasoline	6.33	4780
Total Diesel and Gasoline	11.22	6654

- Expected revenue from: > \$1.7 million/day
- Assuming 15 gal/tank, this amount of gasoline and diesel can fill over 18,500 cars/day
- Compare to U.S. 2011 demand of 9.12 million barrels/day

Carbon Sequestration

CO₂ management

Pump spotlight: Re-injection pilot

© General Electric Company. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Options:
 - Recycle
 - Sell
 - Underground storage
 - Deep ocean dissolution
- CO₂ liquifies at 300kg/m³
- Compress to 20 MPa with inline integrally geared compressor and DDHF multistage barrel pump

Public domain image

- Potential improvements
 - scale up

- use oxygen from H_2 plant in gasification step -recycle flue gas, H_2S , CO_2 wastes

- Jobs generated: farmers, drivers, plant workers
- Total daily profit: \$1.4 million/day
- Total profit selling only electricity: \$0.83 million/day

Concluding Thoughts

- This facility design can feasibly produce green electricity, biodiesel, and biogasoline
- Minimal carbon emissions
- Nuclear reactor produces 1000 MWe to grid and powers hydrogen and biofuel plants
- Biofuels produces enough alternative fuels for 18,500 cars/day

- Dr. Short
- Tyrell Arment
- Koroush Shirvan
- Professor Golay
- Professor Forsberg
- Professor Driscoll
- Professor Todreas

Questions & Discussion

MIT OpenCourseWare http://ocw.mit.edu

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.