
1. Scattering Theory

We want to describe the interaction of radiation with matter as a scattering process. Specifically, we are interested in calculating the rate
of scattering (and then the cross section), which is nothing else than the transition rate from an initial state (initial state of the matter +
incoming particle) and a final state (final state of the target + outgoing radiation).
This is a problem that can be solved by using Fermi’s Golden rule. We describe a scattering event as a particle coming close to a target
or a medium, interacting with it and then being deflected away, thus we can define initial and final states and transition between them.

1.1 Cross Section

The scattering cross section is defined as the rate of scattering divided by the incoming flux of “particles”:

d 2σ

dΩdE
∝ WS(Ω,E)

Φinc

We consider a particle + medium system, where the particle is some radiation represented by a plane wave of momentum~k. In general,
we will have to define also other degrees of freedom denoted by the indexλ, e.g for photons we will have to define the polarization while
for particles (e.g.e neutrons) the spin.
The unperturbed Hamiltonian is0 = R+ M (radiation and medium). We assume that fort the radiation and matter systems
are independent, with (eigen)stat

H
es:

H H → ±∞

|i〉 = |ki,mi〉 , |f〉 = |kf ,mf 〉
with energies:

HR |ki〉 = ~ωi |ki〉 , HR |kf 〉 = ~ωf |kf 〉 , HM |mi〉 = ǫi |ki〉 , HM |mf 〉 = ǫf |mf 〉

and total energies:Ei = ~ωi + ǫi andEf = ~ωf + ǫf .
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Scattering Rate

The rate of scattering is given by the FGR:
2π

Wfi = f
~
| 〈f |T |i〉 |2δ(E − Ei),

whereT is the scattering potential. As usual, we want to replace, if possible, the delta-function with the final density of states. However,
only the radiation will be left in a continuum of states, while the target will be left in one (of possibly many) definite state. To describe
this distinction, we separate the final state into the two subsystems.
We first define the partial projection on radiation states only,Tkf ,ki

= 〈kf |T |ki〉. By writing the delta function as an integral we have:

2π
Wfi =

1
m

~
〈 f |Tkf ,ki

|mi〉 〈mi|T †
kf ,ki

|mf 〉
∞

2π~

∫

ei(ωf−ωi)tei(ǫf−ǫi)t/~

−∞
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Now, sincee−iHRt/~ |m 〉 = e−iǫit/~
i |mi〉 (and similarly for|mf〉 we can rewrite

〈m |T |m 〉 ei(ǫ −ǫ )t/~ = 〈m | eiH t/~T −iH t/~f i R R
f kf ,ki i f kf ,ki

e |mi〉 = 〈mf |Tkf ,ki
(t) |mi〉

and obtain a new expression for the rate as a correlation of “transition” events:

1
Wfi =

ω

~

∫ ∞

ei( f−ωi)t
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−∞

〈mi|T †
k ,k (0) |mf 〉 〈mf |Tkf ,ki

(t)
f i

|mi〉

Final density of states

The final density of states describe the available states for the radiation. As we assumed that the radiation is represented by plane waves
(and assuming for convenience they are contained in a cavity of edgeL), the final density of states is

L
ρ(k )d3f kf =

(

k
2

)3

k2d
π f fdΩ

We can express this in terms of the energy,ρ(k)d3k = ρ(E)dEdΩ. For example, for photons, which havek = E/~c we have

L
ρ(E) = 2

(

2π

)3
E2

~3c3
= 2
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)3
ω2
k

~c3

where the factor 2 takes into account the possible polarizations. For neutrons (or other particles such that
2

E = ~ k2

):2m

ρ(E) =

(

L

2π

)3
k

~2
=

(

L

2π

)3 √
2mE
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If the material target can be left in more than one final state, we sum over these final statesf . Then the average rate is given by
WS =

∑

f Wfiρ(E)dEdΩ (assuming thatWfi does not change very much indΩ anddE).

Incoming Flux

The incoming flux is given by the number of scatterer per unit area and unit time,Φ = # . In the cavity considered, we can expressAt

the time ast = L/v, thus the flux isΦ = v
3 . For photons, this is simplyΦ = c/L3, while for massive particles (neutrons)v = ~k/m,L

yieldingΦ = ~k .mL3

1.2 Thermal Neutron Scattering

Using the scattering rate above and the incoming flux and density of state expression, we can find the cross section for thermal neutrons.
From

L
ρ(E)/Φ =

[
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2π

)3
mkf
~2

]

/
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~ki
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]

=
(mL3)2

(2π~)3
kf
ki

we obtain
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∫ ∞ 〈 〉 1
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mL3
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f

= = eiωfit T † k
(0)T (t) =
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eiω t
~ ~ fi

if fi

〈
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if (0)Tfi(t) ,

dΩdω Φ Φ ~2 −∞ 2π 2π~2 ki −∞

〉

where〈·〉 indicates an ensemble average at the given temperature.
Now the eigenstates|ki,f 〉 are plane waves,〈r|k〉 = ψ (r) = eik·rk /L3/2. Then, definingQ = ki − kf the transition matrix element is

1
Tfi(t) = 〈kf |T (t) |k 〉 =

∫

d3rψ (r)∗T (r, t)ψ (r) =

∫

d3reiQ·r
i kf ki

T (r, t)
L3 L3

L3

and
1

Tfi(0)
† =

L3

∫

d3re−iQ·rT (r, 0)†

L3
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Fermi Potential

To first order, we can approximateT by V , the nuclear potential in the center of mass frame (of the neutron+nucleus). You might recall
that the nuclear potential is a very strong (V0 30MeV) and narrow (r0 2fm) potential. These characteristics seem to preclude a
perturbative approach, since the assumption of

∼
a weak interaction (compar

∼
ed to the unperturbed system energy) is not satisfied. Still,

the fact that the potential is narrow means that the interaction only happens for a very short time. Thus, if we average over time, we
expect a weak interaction. More precisely, the scattering interaction only depends on the so-calledscattering length a, which is on the
ordera ∼ V0r0. If we keepa constant, different combinations ofV, r will give the same scattering behavior. We can thus replace the
strong nuclear potential with a weaker, pseudo-potentialṼ0, provided this has a much longer ranger̃0, such thata ∼ ˜V0r0 = V0r̃0. We
can choosẽV0, r̃0 so that the potential is weak (eV) but the range is still short compared to the wavelength of the incoming neutron,
kr̃0

2π 2
~

V (r) = aδ(r)
µ

We can also define thebound scattering length, b = µ a ≈ A+1 , weremn is the neutron’s mass andA the nucleus mass number. Thenm A

the potential is
n

2π 2
~

V (r) = aδ(r)
mn

Note thatb (interaction length or bound scattering length) is a function of the potential strength and range, which depend on the isotope
from which the neutron is scattered off.
Then to first order the transition matrix isT 2π 2

~
fi = b, or more generally, if there are many scatterers, each at a positionrx(t), we have:mn

2π 2
~

Tfi(t) =
∑

b iQ·rx(t)
xe

mn x

The scattering cross section becomes

d 2σ 1 k ∞
f

=

∫

eiωfit

〈

∑

b b e−iQ·rx(0)eiQ·ry(t)
x y

dΩdω 2π ki −∞ x,y

〉

Notice that since the collisions are spin-dependent, we should average over isotopes and spin states and replacebxby with bxby.

1. Then, it is possible to replace the potential with a simple delta-function at the origin.≪

Scattering Lengths

Notice thatb does not depend explicitly on position, although the position determines which isotope/spin we should consider. What is

bxby? We have two contributions. For this is , while for , it is
2 2 2

x = y b2δx,y x = y b (1− δx,y). We then writeb = ( 2
xby b − b )δx,y+ b =

b2i + b2c which defines thecoherent scattering lengthbc = b and theincoherent scattering length
2

b2 2
i = b − b . If there areN scatterers,

we have
∑

bxby = N(b2 2
i + bc).

Structure Factors

6

Using these definition, we arrive at a simplified expression:

d 2σ kf
= N b2iSS(Q,ω) + b2

dΩdω k cS(Q,ω)
i

where we used theself-dynamicstructure factor

( )

1
S (Q,ω) =

∫ ∞

eiωfit

〈

1 ∑

e−iQ·rx(0)eiQ·rx(t)
S

2π −∞ N
x

〉

which simplifies to
1 ∞

S (Q,ω) =

∫

eiωfit e−iQ·r(0) r
S eiQ· (t)

2π −∞

if all nuclei are equivalent (same isotope), and thefull dynamicstructure

〈

factor

〉

1 1
S(Q,ω) =

∫ ∞

eiωfit

〈

∑

e−iQ·rx(0)eiQ·ry(t)

2π −∞ N
x,y

〉

The structure factors depend only on the material properties. Thus they give information about the material when obtained from experi-
ments.
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