22.02 - Introduction to Applied Nuclear Physics - Spring 2011

Fourier Transform

The Fourier transform is a generalization of the complex Fourier series. The complex Fourier Series is an expansion of a periodic function (periodic in the interval $[-L / 2, L / 2]$) in terms of an infinite sum of complex exponential:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} A_{n} e^{2 i \pi n x / L} \tag{1}
\end{equation*}
$$

where the coefficients A_{n} are:

$$
\begin{equation*}
A_{n}=\frac{1}{L} \int_{-L / 2}^{L / 2} f(x) e^{-2 i \pi n x / L} d x \tag{2}
\end{equation*}
$$

Note that this expansion of a periodic function is equivalent to using the exponential functions $u_{n}(x)=e^{2 i \pi n x / L}$ as a basis for the function vector space of periodic functions. The coefficient of each "vector" in the basis are given by the coefficient A_{n}. Accordingly, we can interpret equation (2) as the inner product $\left\langle u_{n}(x) \mid f(x)\right\rangle$.

In the limit as $L \rightarrow \infty$ the sum over n becomes an integral. The discrete coefficients A_{n} are replaced by the continuous function $F(k) d k$ where $k=n / L$. Then in the limit $(L \rightarrow \infty)$ the equations defining the Fourier series become :

$$
\begin{align*}
f(x) & =\int_{-\infty}^{\infty} F(k) e^{2 \pi i k x} d k \tag{3}\\
F(k) & =\int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x \tag{4}
\end{align*}
$$

Here,

$$
F(k)=F_{x}[f(x)](k)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x
$$

is called the forward Fourier transform, and

$$
f(x)=F_{k}^{-1}[F(k)](x)=\int_{-\infty}^{\infty} F(k) e^{2 \pi i k x} d k
$$

is called the inverse Fourier transform.
The notation $F_{x}[f(x)](k)$ is common but $\hat{f}(k)$ and $\tilde{f}(x)$ are sometimes also used to denote the Fourier transform.
In physics we often write the transform in terms of angular frequency $\omega=2 \pi \nu$ instead of the oscillation frequency ν (thus for example we replace $2 \pi k \rightarrow k$). To maintain the symmetry between the forward and inverse transforms, we will then adopt the convention

$$
\begin{gathered}
F(k)=F[f(x)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \\
f(x)=F^{-1}[F(k)]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{i k x} d k
\end{gathered}
$$

Sine-Cosine Fourier Transform

Since any function can be split up into even and odd portions $\mathrm{E}(\mathrm{x})$ and $\mathrm{O}(\mathrm{x})$,

$$
f(x)=\frac{1}{2}[f(x)+f(-x)]+\frac{1}{2}[f(x)-f(-x)]=E(x)+O(x),
$$

a Fourier transform can always be expressed in terms of the Fourier cosine transform and Fourier sine transform as

$$
F_{x}[f(x)](k)=\int_{-\infty}^{\infty} E(x) \cos (2 \pi k x) d x-i \int_{-\infty}^{\infty} O(x) \sin (2 \pi k x) d x
$$

Properties of the Fourier Transform

- The smoother a function (i.e., the larger the number of continuous derivatives), the more compact its Fourier transform.
- The Fourier transform is linear, since if $f(x)$ and $g(x)$ have Fourier transforms $F(k)$ and $G(k)$, then

$$
\int[a f(x)+b g(x)] e^{-2 \pi i k x} d x=a \int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x+b \int_{-\infty}^{\infty} g(x) e^{-2 \pi i k x} d x=a F(k)+b G(k) .
$$

Therefore,

$$
F[a f(x)+b g(x)]=a F[f(x)]+b F[g(x)]=a F(k)+b G(k) .
$$

- The Fourier transform is also symmetric since $F(k)=F_{x}[f(x)](k)$ implies $F(-k)=F_{x}[f(-x)](k)$.
- The Fourier transform of a derivative $f^{\prime}(x)$ of a function $f(x)$ is simply related to the transform of the function $f(x)$ itself. Consider

$$
F_{x}\left[f^{\prime}(x)\right](k)=\int_{-\infty}^{\infty} f^{\prime}(x) e^{-2 \pi i k x} d x
$$

Now use integration by parts

$$
\int v d u=[u v]-\int u d v
$$

with

$$
d u=f^{\prime}(x) d x \quad v=e^{-2 \pi i k x}
$$

and

$$
u=f(x) \quad d v=-2 \pi i k e^{-2 \pi i k x} d x
$$

then

$$
F_{x}\left[f^{\prime}(x)\right](k)=\left[f(x) e^{-2 \pi i k x}\right]_{-\infty}^{\infty}-\int_{-\infty}^{\infty} f(x)\left(-2 \pi i k e^{-2 \pi i k x}\right) d x
$$

The first term consists of an oscillating function times $f(x)$. But if the function is bounded so that

$$
\lim _{x \rightarrow \pm \infty} f(x)=0
$$

(as any physically significant signal must be), then the term vanishes, leaving

$$
F_{x}\left[f^{\prime}(x)\right](k)=2 \pi i k \int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x=2 \pi i k F_{x}[f(x)](k)
$$

This process can be iterated for the $n^{t h}$ derivative to yield

$$
F_{x}\left[f^{(n)}(x)\right](k)=(2 \pi i k)^{n} F_{x}[f(x)](k) .
$$

- If $f(x)$ has the Fourier transform $F_{x}[f(x)](k)=F(k)$, then the Fourier transform has the shift property

$$
\int_{-\infty}^{\infty} f\left(x-x_{0}\right) e^{-2 \pi i k x} d x=\int_{-\infty}^{\infty} f\left(x-x_{0}\right) e^{-2 \pi i\left(x-x_{0}\right) k} e^{-2 \pi i\left(k x_{0}\right)} d\left(x-x_{0}\right)=e^{-2 \pi i k x_{0}} F(k),
$$

so $f\left(x-x_{0}\right)$ has the Fourier transform

$$
F_{x}\left[f\left(x-x_{0}\right)\right](k)=e^{-2 \pi i k x_{0}} F(k)
$$

- If $f(x)$ has a Fourier transform $F_{x}[f(x)](k)=F(k)$, then the Fourier transform obeys a similarity theorem.

$$
\int_{-\infty}^{\infty} f(a x) e^{-2 \pi i k x} d x=1 /(|a|) \int_{-\infty}^{\infty} f(a x) e^{-2 \pi i(a x)(k / a)} d(a x)=1 /(|a|) F(k / a)
$$

so $f(a x)$ has the Fourier transform

$$
F_{x}[f(a x)](k)=|a|^{-1} F(k / a) .
$$

- Any operation on $f(x)$ which leaves its area unchanged leaves $F(0)$ unchanged, since

$$
\int_{-\infty}^{\infty} f(x) d x=F_{x}[f(x)](0)=F(0)
$$

Table of common Fourier transform pairs.

Function	$f(x)$	$F(k)=F_{x}[f(x)](k)$
Constant	1	$\delta(k)$
Delta function	$\delta\left(x-x_{0}\right)$	$e^{-2 \pi i k x_{0}}$
Cosine	$\cos \left(2 \pi k_{0} x\right)$	$\frac{1}{2}\left[\delta\left(k-k_{0}\right)+\delta\left(k+k_{0}\right)\right]$
Sine	$\sin \left(2 \pi k_{0} x\right)$	$\frac{1}{2} i\left[\delta\left(k+k_{0}\right)-\delta\left(k-k_{0}\right)\right]$
Exponential function	$e^{-2 \pi k_{0}\|x\|}$	$\frac{1}{\pi} \frac{k_{0}}{k^{2}+k_{0}^{2}}$
Gaussian	$e^{-a x^{2}}$	$\sqrt{\frac{\pi}{a}} e^{-\pi^{2} k^{2} / a}$
Heaviside step function	$H(x)$	$\frac{1}{2}[\delta(k)-i /(\pi k)]$
Lorentzian function	$\frac{1}{\pi} \frac{\Gamma / 2}{\left(x-x_{0}\right)^{2}+(\Gamma / 2)^{2}}$	$e^{-2 \pi i k x_{0}} e^{-\Gamma \pi\|k\|}$

In two dimensions, the Fourier transform becomes

$$
\begin{aligned}
F(x, y)= & \left.\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(k_{x}, k_{y}\right) e^{-2 \pi i\left(k_{x} x+k_{y} y\right.}\right) d k_{x} d k_{y} f\left(k_{x}, k_{y}\right) \\
& \left.=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x, y) e^{2 \pi i\left(k_{x} x+k_{y} y\right.}\right) d x d y
\end{aligned}
$$

Similarly, the n -dimensional Fourier transform can be defined for k, x in \mathbb{R}^{n} by

$$
F(x)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f(k) e^{-2 \pi i k \cdot x} d^{n} k f(k)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} F(x) e^{2 \pi i k \cdot x} d^{n} x
$$

MIT OpenCourseWare
http://ocw.mit.edu

22.02 Introduction to Applied Nuclear Physics

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

