
22.02 Intro to Applied Nuclear Physics

Mid-Term Exam

Thursday March 17, 2011 Solution

Problem 1: Short Questions 24 points

These short questions require onlyshort answers (but even for yes/no questions give a brief explanation)

1) What information about a quantum system can you obtain from the wavefunction?

Solution:

The wavefunction contains all possible information about the state of a quantum system. Thus from the wavefunction
it is possible to extract information about the probability of measurement outcomes for any observable (thus also the
expectation values of the observables). The probability distribution function of the system position (obtained from the
absolute value square of the wavefunction) is just one of the .

2) If we measure the kinetic energy of a quantum particle and immediately after we measure its momentum, is the
result of the second measurement random?

Solution:

No: if the momentum measurement gave an outcomep = ~k, then the kinetic energy is
2 2

= ~ k2

T
2

= p
2

. Thism m
is because the momentum measurement projects the wavefunction of the system into a momentum eigenfunction
(wavefunction collapse) and this momentum eigenfunction is also an eigenfunction of the kinetic energy since the two
operators commute.

3) What does the Coulomb term in the Semi-empirical mass formula describe?

Solution:

The Coulomb term describes a decrease in the biding energy due to the Coulomb repulsion among protons in the
nucleus. Thus for a given mass number A, it is less favorable to have a large number of protons. The Coulomb term
dependence on A and Z is found from a simple model of the nucleus as a spherical charge.

4) A particle is in the quantum state,ψ(y) = Ae−iπy .
a) What are the possible results of a momentum measurement?
b) What are the probabilities of each possible momentum measurement?
c) What physical situation is represented by this quantum state?

Solution:

a) The outcomes of a momentum measurement are the momentum operator eigenvalues, which span all real numbers.
Given the system’s state however, only one result has non-zero probability, since the state is an eigenfunction of the
momentum operator. The corresponding eigenvalue isp = −~π.
b) Since there is only one non-zero probability, the probability of findingp = −~π is equal to one.
c) This quantum state represent a free, unbound, system (i.e. a system that does not feel the effects of any potential).
The system is better represented by a flux of particle with wavenumberk traveling in the−y direction.

5) When is the wavefunction describing a quantum system an energy eigenfunction?

Solution:

When the wavefunction is stationary or time-independent. In that case it has to satisfy the time-independent Schrödinger
equation which is the energy eigenvalue equation. Another case is when the wavefunction has collapsed into an energy
eigenfunction just after the measurement of the energy (it will then remain in that state, since it will be a stationary,
time-independent state).

6) Which one of the following statements (if any) is correct, based on the properties of the angular momentum and
its eigenfunctions?
a) A particle is in the angular momentum eigenstate,ψl,mz

(ϑ, ϕ) = |l=3,mz=-4〉.
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b) A particle is in the angular momentum eigenstate,ψl,mx,mz
(ϑ, ϕ) = |l=4,mx=3,mz=-2〉.

c) A particle is in the angular momentum eigenstate,ψl,mx
(ϑ, ϕ) = |l=4,mx=3〉.

Solution:

We know that the eigenvalues ofL2 and the componentsLx, Lz, Ly have to satisfy the relationship:−l ≤ m ≤ l.
Thus the first statement is incorrect.

The second statement is also not possible becauseLx andLz do not commute, thus there cannot be a common
eigenfunction of the two operators with a fixedmx andmz. The last statement is instead a valid eigenfunction of the
angular momentum operator.

Note: many of you tried to answer this question from considerations regarding the relationshipL̂2 ˆ= L2 ˆ
x + L2 ˆ

y + L2
z.

If we apply this equation to the state|l=3,mz=-4〉, this gives:

2
~ 3(3 + 1) |l=3,mz=-4〉 = (L̂2

x + L̂2

y) |l=3,mz=-4〉 + 2
~ 42 |l=3,mz=-4〉

Changing the order of the equation we obtain it implies that|l=3,mz=-4〉 is an eigenfunction of the operatorL̂2 ˆ
x +L2

y,
with eigenvalue−4~

2:

ˆ(L2 ˆ
x + L2

y) |l=3,mz=-4〉 = 2
~ (3(3 + 1) − 42) |l=3,mz=-4〉 = −4 2

~ |l=3,mz=-4〉

However the operator̂(L2 ˆ
x + L2

y) should have positive eigenvalues: Thus the state|l=3,mz=-4〉 cannot be an eigen-

function ofL̂2 ˆ, Lz.

Note that the equations above are operator equations, or, when applied to functions, equations involving functions.
They are not directly equations involving theeigenvalues alone. Thus I cannot state the implication:

L̂2 ˆ= L2 ˆ
x + L2 ˆ

y + L2

z → 2
~ l(l+ 1) = 2

~ m2

x + 2
~ m2 2 2

~y + mz

The only thing I can state is if I consider the expectation value of the operators wrt a valid eigenfunction:

〈 | ˆ2 | 〉 〈 | ˆ2 | 〉 〈 | ˆ ˆl,mz L l,mz = l,mz Lx l,mz + l,m 2 2
z Ly |l,mz〉 + 〈l,mz|Lz |l,mz〉

→ 2
~ l(l+ 1) = 〈l,mz| ˆ ˆL2

x |l,mz〉 + 〈l,mz|L2

y |l,m 2
~z〉 + m2

z

|l,mz〉 is not an eigenfunction of̂Lx andL̂y so the previous equation is not correct.

7) When is a quantum system “bound”? Give a condition in terms of the system energyE and potential energyV .

Solution:

A quantum system is bound in a given region of space when its energyE > V (x) in that region of space, but
E < V (x) everywhere else, such as in a potential well (with no possibility to ever escape via tunneling). If the well is
not infinite, the wavefunction penetrates outside the potential well region (as a decaying exponential): even when this
happens, the state is still considered bound.

8) Is the Q-value of a nuclear reaction (such as alpha-decay) the only factor that determines if the reaction does
happen spontaneously?

Solution:

No. Although the Q-value for some reactions might be favorable, they still don’t happen if there is a large potential
barrier (e.g. the Coulomb barrier) that lead to a negligible tunneling probability.

Problem 2: Rotations and angular momentum 26 points

Note: This problem only required very simple answers based on what you know about commutators and operator
properties (the only thing you needed to know about angular momentum is that the various component do not com-
mute). Since many of you found it hard, I am giving below very detailed calculations. This was not needed nor
required of you (each answer could have taken 3 lines) but hopefully it will help the understanding.

a) (2 points) Consider classical rotations in a 3D Euclidean space. We defineR~n(ϑ) the operator describing a
rotation around the axis~n by an angleϑ. Do the operatorsRz(ϑ) andRz(ϕ) commute? Do the operatorsRx(ϑ) and
Ry(ϕ) commute? (a yes/no answer is enough)
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Solution:

Rz(ϑ) andRz(ϕ) commute (as any two rotations along the same axis) whileRx(ϑ) andRy(ϕ) do not commute (as
any two rotations along two different axes).

b) Now we consider rotations in quantum mechanics. We write rotations as the operatorsR̂~n(ϑ).
For small anglesϑ we can write these rotations using the angular momentum operator asR̂~n(ϑ) = 1 − iϑ ˆ

~
Ln (for

exampleˆ ˆRx(ϑ) = 1 − iϑ
~
Lx). Do rotations in quantum mechanics commute?

Solution:

As rotation along different axes are written in terms of angular momentum operators that do not commute, we expect
them not to commute. We can prove this by calculating the commutator:

ϑ ϕ
[Ra(ϑ), Rb(ϕ)] = [1 − i La, 1 L

~
− i b]

~

The commutator of a sum,[A + B,C +D] is calculated by expanding out each term:[A + B,C +D] = [A,C] +
[A,D] + [B,C] + [B,D] (as you can verify from the definition of commutator).Then

ϕ ϑ ϑ ϕ ϑϕ
[Ra(ϑ), Rb(ϕ)] = [1, 1] + [1,−i Lb] + [−i La, 1] + [−i La,−i Lb] = −

2
[La, Lb]

~ ~ ~ ~ ~

where we used the fact that a scalar always commutes with everything. Because of the commutation properties of the
angular momentum operator, we know that ifa = b (e.g.,a = b = x) we have[Lx, Lx] = 0 and the rotation commute.
However, ifa = b then the two rotation do not commute. This is similar to the classical result.

c) Calculate the difference between making first a rotationRy(ϕ) followed by a rotationRx(ϑ) and making first
Rx(ϑ) and thenRy(ϕ). Can you express this difference as a rotation?

Solution:

This difference is nothing else than the commutator[Rx(ϑ), Ry(ϕ)] = Rx(ϑ)Ry(ϕ) − Ry(ϕ)Ry(ϑ). Given what we
calculate above, thus is given by:

ϑϕ ϑϕ
[Rx(ϑ), Ry(ϕ)] = −

2
[Lx, Ly] = −i Lz

~ ~

Note that this can be written as a rotation around the z axis,[Rx(ϑ), Ry(ϕ)] = Rz(ϑϕ) − 1.

—–

We could also have calculated explicitly the two cases:

ϑ ϕ ϑ ϕ
1st case:Rx(ϑ)[Ry(ϕ)[ψ]] = (1 − i Lx)[(1 − i Ly)[ψ]] = (1 − i Lx)[ψ − i Ly[ψ]] =

~ ~ ~ ~

ϕ ϑ ϑ ϕ 1 ϑϕ
= ψ − i Ly[ψ] − i Lx[ψ] − i Lx[−i Ly[ψ]] = ψ − i (ϕLy[ψ] + ϑ~Lx[ψ]) −

2
Lx[Ly[ψ]]

~ ~ ~ ~ ~ ~

ϕ ϑ ϕ ϑ
2nd case:Ry(ϕ)[Rx(ϑ)[ψ]] = (1 − i Ly)[(1 − i Lx)[ψ]] = (1 − i Ly)[ψ =

~
− i Lx[ψ]]

~ ~ ~

ϑ ϕ ϕ ϑ 1 ϑϕ
= ψ − i Lx[ψ] − i Ly[ψ] − i L ~y[−i Lx[ψ]] = ψ − i (ϕLy[ψ] + ϑ Lx[ψ]) Ly[Lx[ψ]]

~ ~ ~ ~ ~
−

~2

The two expressions are the sameexceptfor the terms∝ ϑϕ
~2 whereLx, Ly appear in different order:

ϑϕ ϑϕ ϑϕ
1st case - 2nd case= −

2
(Lx[Ly[ψ]] − Ly[Lx[ψ]]) = −

2
[Lx, Ly][ψ] = −i Lz[ψ]

~ ~ ~

thus we obtain the same result.

d) A quantum system is in a stateψ such that it is left unchanged by a rotation along x:R̂x(ϑ)ψ = ψ.
Isψ an eigenfunction of̂Lx?

Solution:

ψ is an eigenfunction of̂Rx with eigenvalue1. BecauseRx andLx commute,ψ must be an eigenfunction of̂Lx as
well.

3
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—–

We can verify this by using the definition of̂Rx:

ϑ ϑ
R̂x(ϑ)ψ = ψ → (1 − i Lx)ψ = ψ → −i Lxψ = 0ψ

~ ~

Thusψ is an eigenfunction ofLx with eigenvalue0, sinceLxψ = 0ψ.

e) We studied in class that the eigenvalues of the angular momentum operator along x,L̂x, are ~mx with integers

mx = −l,−l + 1, . . . , l. Consider a quantum stateψ = 1√
6
ϕ−2 + 1

2
ϕ0 + 7

112
ϕ , whereϕm is the normalized

eigenfunction of̂Lx corresponding to the eigenvalue~mx.

√

What is the probability of findinĝLx = 0 in a measurement? What is
〈

L̂x

〉

?

Solution:

The probability of obtaining a particular eigenvaluemi in a measurement is given byP 2
i = |〈ψ|ϕi〉| , whereϕi is the

eigenfunction corresponding to the eigenvaluemi. Thus the probability of finding the zero eigenvalue ofLx, ~ × 0 is
|〈ψ|ϕ0〉|2 = 1

4
.

Similarly, we can find the probabilities ofmx = −2 and1 to be 1

6
and 7

12
respectively. Then the expectation value (or

average) is simply:
1 1 7 ~〈Lx〉 = −2~ + 0~ + ~ =
6 4 12 4

—–

Note that the inner product can be calculated very easily since we know that for normalized eigenfunctions the inner
product〈ϕi|ϕj〉 is zero for two different eigenfunctions (they are orthogonal) and one ifi = j:

1 1 7 1 1 7 1 1 7 1〈ψ|ϕ0〉 = 〈√ ϕ + ϕ + ϕ ϕ = ϕ ϕ + ϕ ϕ + ϕ ϕ = 0+ 1+ 0 =
6

−2 0 1
2

√

1
| 0〉 √

6
〈 −2 0

2
| 〉 0

2
〈 | 0〉

√

〈 1| 0
12

〉 √
6
×

2
×

√

12
×

2

Similarly we can calculate〈ψ|ϕ =−2〉 1√
6

and〈ψ|ϕ1〉 =
√

7 1
~ 212

. Fromψ we thus have thatP (Lx = −2 ) = P =− 6
,

P (Lx = 0~) = P0 = 1

4
, P (L 7

~x = ) = P1 =
12

(all the otherPi are zero) and the expectation value ofLx (or its

average) is
〈

L̂
〉

=
∑

m P = −2 1 + 0 1 7
~ ~ ~x i i i 6 4

+ ~
12

= ~

4
. We can as well use the usual definition of expectation

value:
1 1 7 1 1 7〈Lx〉 = 〈ψ|Lx |ψ〉 =

〈

√ ϕ 2 + ϕ0 +

√

ϕ1

∣

∣

∣

Lx

∣

∣

∣√ ϕ 2 + ϕ0 + ϕ− 1

6 2 12 6
−

2

√

12

〉

or using the explicit definition of inner product in terms of an integr

∣

∣

al:

∣

∣

〈Lx〉 =

∫

1
ψ∗Lx[ψ]d3r =

∫

1 7 1 1 7
(√ ϕ ϕ0 +

6 2

√

ϕ1)
∗Lx[ ϕ−2 + 2 + ϕ0 + ϕ1]d

3r
12

√
6

−
2

√

12

Now,
1 1

√

7 1 1 7
Lx[√ ϕ 2 + ϕ0 + ϕ1] = −2~√ ϕ 2 + 0~ ϕ

6
−

2 12 6
− 0 + ~

2

√

ϕ1
12

because theϕi are eigenfunctions ofLx. Thus the integral is:

〈Lx〉 =

∫

1 1 7
(√ ϕ 2 + ϕ0 +

√

7 1 1
ϕ1)

∗(
6

− −2~
2

√ ϕ
6

−2 + 0~ ϕ0 + ~ =
2 1 2

√

ϕ1)d
3r

12

1
=

∫

1 1 7
(−2~ ϕ∗

2ϕ 2)d
3r +

∫

(−2~√ ϕ∗

∫

~0ϕ 2)d
3r + · · · + ϕ∗

1ϕ
3

1 d r
6 − −

6 2
−

12

where I expanded out (but not written explicitly) all the products. Since theϕi are eigenfunctions, we know that they
are orthonormal, thus,

∫

ϕ∗
iϕid

3r = 1,

∫

ϕ∗
iϕj d

3r = 0

Then the only terms remaining from the above integral are:

1 1 7 ~〈Lx〉 = −2~ + 0~ + ~ =
6 4 12 4
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Note that this expression is exactly the same we found by considering the probabilities:

〈L 2 2
~ ~ ~x〉 =

∑

mi |〈ψ|ϕi〉| =
∑

mi |ci| =
∑

mi Pi

i i i

This result is of course very general as you have already seen in recitation: we can always write any wavefunction
ψ =

∑

i ciϕi whereϕi are eigenfunctions of the operatorA we want to calculate the expectation value of (since the
ϕi form a basis andci = 〈ϕi|ψ〉). Then

〈A〉 = 〈ψ|A |ψ〉 =
∑

c∗j ci 〈ϕj |A |ϕi〉 =
∑

c∗ j | a 2

jci 〈ϕ i ϕ
ij i

| i〉 =
∑

c∗jciai

j ij

〈ϕj |ϕi〉 =
∑

i

|ci| ai

Problem 3: Radioactive decay by proton emission 30 points

Useful quantities: Proton mass,mpc
2 = 938.272 MeV;~c = 197MeV fm; e2

~
= 1

137
; c = 3 × 108m/s;Rc 0 = 1.2fm.

a) (4 points) Consider the isotope Europium-131 (131

63
Eu), with mass 121919.966 MeV. Given its A and Z numbers,

do you expect this isotope to be stable?

Solution:

The ratio of the mass and proton number isZ/A ≈ 0.48. We know that for heavy stable nuclei this ratio is instead
≈ 0.41 (Z ≈ A/2 only for light nuclides). Thus we expect this isotope to be unstable and to decay by a process
that will make it shed some protons. A possible decay channel for131

63 Eu is proton emission. We want to analyze this

decay mode following the same theory we saw for alpha decay and in particularestimatethe half-life of131
63

Eu. The
following questions will guide you through the estimation.

b) (5 points) The mass of Samarium-130 is 120980.755 MeV. What is the Q-value for the reaction131Eu → 130

63 62
Sa

+1

1
H?

Solution:

The Q-value can be calculated from the mass differences:

Q = mEu −mp −mSa = 0.939MeV

c) (6 points) Calculate the frequencyf = v for the proton to be at the edge of the Coulomb potential. HereR is theR
Samarium radius andv the proton speed when takingQ as the (classical) kinetic energy.

Solution:

From theQ calculated above we can obtain the velocity as1

2
mpv

2 = Q or,

v =

√

2Q
2
c = 0.045c = 1.34

mpc
× 1022fm/s

In this calculation I assumed that the proton has all the kinetic energy, while the daughter nuclide is still at rest. This
is in any case a good approximation, given the masses. A more precise calculation can be obtained if we consider
conservation of momentum,mSavSa +mpv = 0, to find:

v =

√

2Q
2

c = 0.045c = 1.34 1022fm/s
mpc (1 +mp/mSa)

×

(the result is the same to the second decimal place).

The nuclear radius is given byR = R0A
1/3 = 6.079 fm. Thus the frequency isf = v = 2.21 × 1021 s 1

R
− .

Note: as in the alpha decay model, we could have worked in the center of mass frame and use the reduced mass and
total radius in the calculation above. Since the proton is much smaller (in terms of mass and radius) than Samarium,
the difference in the two calculations is negligible.
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d) (5 points) What is the Coulomb potential at the distanceR, VC(R)? (this is the potential barrier height).
What is the distanceRc at which the Coulomb potential is equal to the Q-value?

Solution:

The Coulomb potential is given by

e2Z e2 Z 1 61
V ~C(R) = = c = 197MeV fm = 14.65MeV

R ~c R 137 6.079fm

Note: because the fine constante2

~
= 1

137
was given in cgs units, the Coulomb potential could be calculated fromc

it in cgs units. Since it is a dimensionless constant, I could have written as welle2

4 0~
= 1

137
in SI units andπǫ c

VC(R) = e2Z
4πǫ0

.R

To find the distanceRc we equate the Coulomb potential to the Q-value:

e2Z e2Z V
= Q

c
→ C(R)

RC = = R = 94.84fm
R Q Q

e) (4 points) To estimate the tunneling probability we replace the Coulomb barrier with a rectangular barrier of
heightVH = VC(R)/2 and lengthL = (Rc −R)/2 (see figure). What is the tunneling probability?

Solution:

Since we want toestimatethe tunneling probability, we take the approximate expressionPT = 4e−2κL. We first need
to calculateκ:

√

2m(V c2H −Q)
√

2mp (VC/2
κ = =

−Q)
= 0.55fm−1

~ ~c

We then have2κL = 48.58. Reading out from the graphic, this corresponds toP = 4e−2κL ≈ 4× 10−21
T (if instead

we had a good scientific calculator we would getPT = 3.19× 10−21). Since the tunneling probability is very low, the
approximation we took in consideringP 2κL

T = 4e− instead of the exact expression is a good one.

f) Finally, give the decay rateλ and the half-life for the proton emission decay of131

63 Eu.

Solution:

The decay rate is obtained from the same semi-classical model we studied for alpha decay. Thus it is given by the
product of the frequency at which the proton is at the potential barrier (or gets separated from the parent nuclide) times
the probability of tunneling through the barrier. Thus the decay rate is given byλ = fP 1

T = 7.05s− and the half life
is t 1

2

= ln 2/λ = 0.1s.

0

Q

VC
MeV

R RcR Rc

0

Q
VH

MeV

L

30 40 50 60
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10-25
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Problem 4: Match the potential 20 points

A quantum system in a 1D geometry is subjected to the potential energy as in the figures on the right, with 5 regions
of different potential height. Match the 1D energy eigenfunctions on the left with the correct energy (if any) depicted
on the right. Provide abrief explanation of the reasoning that lead you to each of your matchings.

(Notice: here I plot the real part of the eigenfunction).
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Solution:

A-4: The wavefunction in A is always an oscillating
function, so it corresponds to a traveling wave with
always positive kinetic energy. This means thatE >
V in all the five regions

B-1: The wavefunction shows exponential decay in
two regions (II and IV), thus it must have negative ki-
netic energy there, orE < V .

C-2: Here the wavefunction is oscillating except in re-
gion 4, where it is an exponential decay. Thus we have
E < VIV

D-3: In this case, the energy of the system is greater
than the potential only in region III. Thus the system is
confined to that region: the system is bound. The so-
lution will thus have an oscillating behavior in region
III and just a small penetration in the outer regions as
it decays exponentially to zero.

E-2: As in the C case, the wavefunction is oscaillat-
ing in all the regions except in region 4, where it looks
like an increasing exponential. This stationary solu-
tion corresponds to the same potential as above, but
with different boundary conditions: the particle is now
incoming from the right instead than the left as we
mostly solved in class.
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