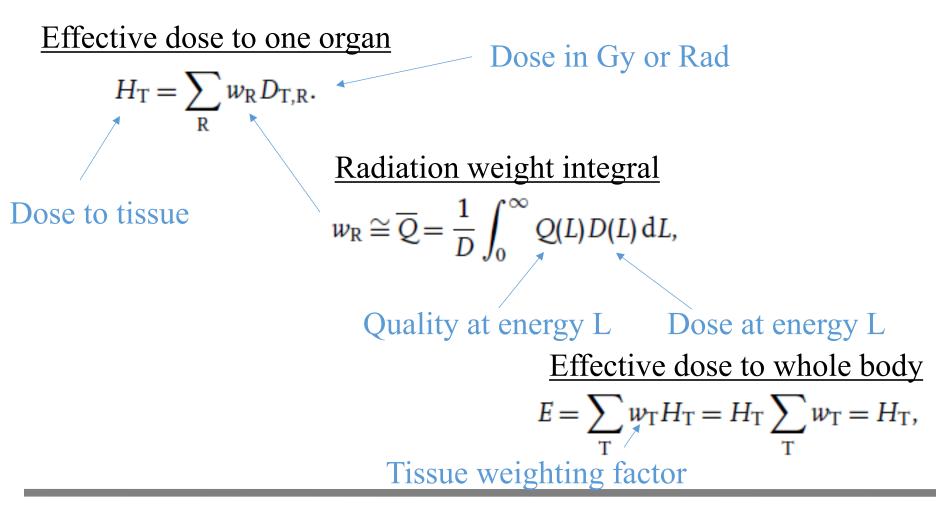
## Slides for Background Radiation

22.01 – Intro to Radiation November 23<sup>rd</sup>, 2015

22.01 – Intro to Ionizing Radiation

## **Tissue Weighting Factors**

Turner, J. E. Atoms, Radiation, and Radiation Protection. Wiley-VCH, 2007.


- One loose end from last lecture – different tissues respond differently to the same dose and exposure
- Why do you think this is so?

| Tissue or Organ   | wΤ   |
|-------------------|------|
| Gonads            | 0.20 |
| Bone marrow (red) | 0.12 |
| Colon             | 0.12 |
| Lung              | 0.12 |
| Stomach           | 0.12 |
| Bladder           | 0.05 |
| Breast            | 0.05 |
| Liver             | 0.05 |
| Esophagus         | 0.05 |
| Thyroid           | 0.05 |
| Skin              | 0.01 |
| Bone surface      | 0.01 |
| Remainder*        | 0.05 |

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>.

22.01 – Intro to Ionizing Radiation

## **Calculating Dose in Sieverts**



22.01 – Intro to Ionizing Radiation

## **Example Calculation**

Content removed due to copyright restrictions.

See Ch. 14 in Turner, J. E. *Atoms, Radiation, and Radiation Protection*. Wiley-VCH, 2007. Example calculations about a worker's radiation dose and NCRP/ICRP annual limits.

### **Increased Health Risks**

#### From Turner, p. 458

### Table 14.3 Probability Coefficients for Stochastic Effects (per Sv effective dose)

| Detriment              | Adult Workers<br>(10 <sup>-2</sup> Sv <sup>-1</sup> ) | Whole Population<br>(10 <sup>-2</sup> Sv <sup>-1</sup> ) |
|------------------------|-------------------------------------------------------|----------------------------------------------------------|
| Fatal cancer           | 4.0                                                   | 5.0                                                      |
| Nonfatal cancer        | 0.8                                                   | 1.0                                                      |
| Severe genetic effects | 0.8                                                   | 1.3                                                      |
| Total                  | 5.6                                                   | 7.3                                                      |

Source: ICRP Publication 60 and NCRP Report No. 116.

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>.

### 22.01 - Intro to Ionizing Radiation

# **How Much Is Too Much?**

Turner, p. 459

NCRP recommendation for lifetime occupational radiation exposure:

The Council ... recommends that the numerical value of the individual worker's lifetime effective dose in tens of mSv be limited to the value of his or her age in years (not including medical and natural background exposure).

Time distribution of exposure over a working career:

The Council recommends that the annual occupational effective dose be limited to 50 mSv (not including medical and background exposure).

## **How Much Is Too Much?**

Turner, p. 460

NCRP recommendation for individual exposure to man-made sources (excluding natural background and medical exposures):

For continuous (or frequent) exposure, it is recommended that the annual effective dose not exceed 1 mSv ... Furthermore, a maximum annual effective dose limit of 5 mSv is recommended to provide for infrequent annual exposures....

## **How Much Is Enough?**

### From Turner, p. 461

Table 14.4 Exposure Limits from NCRP Report No. 116 and ICRP Publication 60

|                       | NCRP-116                               | ICRP-60                           |
|-----------------------|----------------------------------------|-----------------------------------|
| Occupational Exposure |                                        |                                   |
| Effective Dose        |                                        |                                   |
| Annual                | 50 mSv                                 | 50 mSv                            |
| Cumulative            | $10 \text{ mSv} \times \text{age}$ (y) | 100 mSv in 5 y                    |
| Equivalent Dose       |                                        |                                   |
| Annual                | 150 mSv lens of eye;                   | 150 mSv lens of eye;              |
|                       | 500 mSv skin, hands, feet              | 500 mSv skin, hands, feet         |
| Exposure of Public    |                                        |                                   |
| Effective Dose        |                                        |                                   |
| Annual                | 1 mSv if continuous                    | 1 mSv; higher if needed, provided |
|                       | 5 mSv if infrequent                    | 5-y annual average ≤1 mSv         |
| Equivalent Dose       | 1                                      | ,                                 |
| Annual                | 15 mSv lens of eye;                    | 15 mSv lens of eye;               |
|                       | 50 mSv skin, hands, feet               | 50 mSv skin, hands, feet          |

© John Wiley & Sons. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>.

### 22.01 - Intro to Ionizing Radiation

# How Much Is "Nothing?"

NCRP Report No. 116 defines "Negligible Individual Dose" (NID), without corresponding risk level:

The Council . . . recommends that an annual effective dose of 0.01 mSv be considered a Negligible Individual Dose (NID) per source or practice.

ICRP Publication 60 does not make a related recommendation.

## **Normal Background Levels**

### https://radwatch.berkeley.edu/rad101

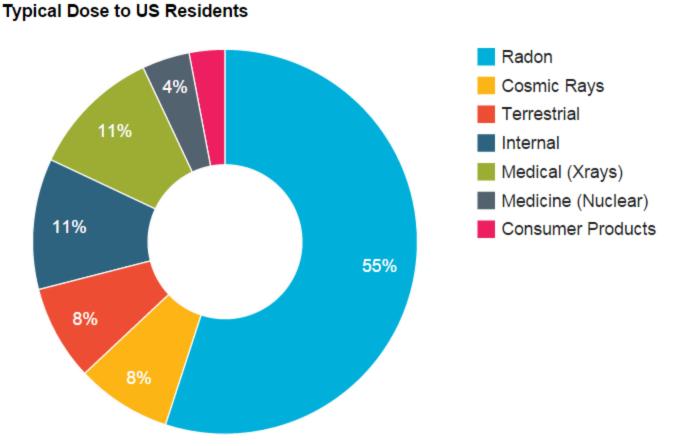
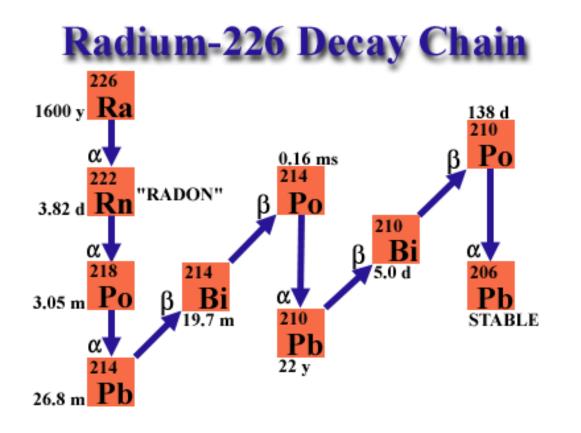




Image by Ryan Pavlovsky. Courtesy of Berkely RadWatch. Used with permission.

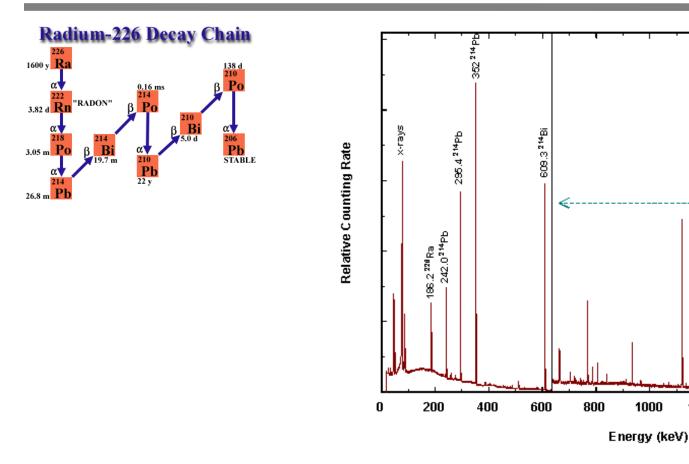
### 22.01 – Intro to Ionizing Radiation

### Natural Sources – Radon

http://www.nist.gov/pml/general/curie/1927.cfm



Public domain image, from U.S. NIST.


22.01 - Intro to Ionizing Radiation

## Natural Sources – Radon

### http://www.nist.gov/pml/general/curie/1927.cfm

<sup>214</sup>Bi

1200

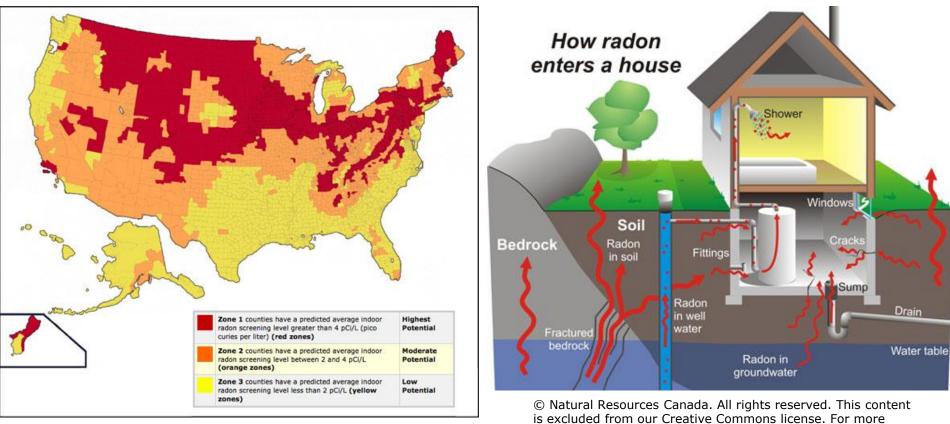


Public domain image, from U.S. NIST.

### 22.01 - Intro to Ionizing Radiation

Background Radiation, Slide 12

1400


1600

Relative Count Rate / 5

1800

2000

## Radon Map of the U.S.



Public domain image, from U.S. EPA.

### Background Radiation, Slide 13

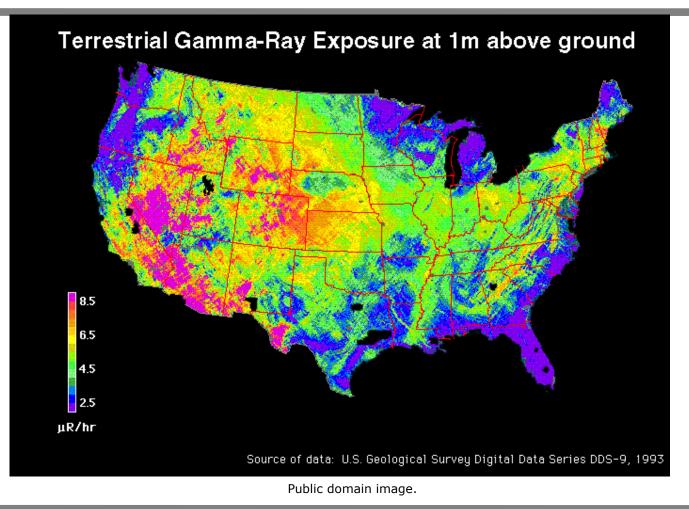
information, see <a href="http://ocw.mit.edu/help/fag-fair-use/">http://ocw.mit.edu/help/fag-fair-use/</a>.

### 22.01 - Intro to Ionizing Radiation

## **Relative Radon Risk**

#### **Radon Risk Evaluation Chart**

| pCi/l | WL    | Estimated number of<br>lung cancer deaths<br>due to radon exposure<br>(out of 1000) | Comparable<br>exposure levels          | Comparable<br>risk                                    |
|-------|-------|-------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------|
| 200   | 1     | 440—770                                                                             | 1000 times<br>average outdoor<br>level | More than 60 times<br>non-smoker risk<br>4 pack-a-day |
| 100   | 0.5   | 270—630                                                                             | 100 times<br>average indoor            | smoker                                                |
| 40    | 0.2   | 120—380                                                                             | level                                  | 20,000 chest<br>x-rays per year                       |
| 20    | 0.1   | 60—210                                                                              | 100 times<br>average outdoor<br>level  | 2 pack-a-day<br>smoker                                |
| 10    | 0.05  | 30—120                                                                              | 10 times average                       | 1 pack-a-day<br>smoker                                |
| 4     | 0.02  | 13—50                                                                               | indoor level                           | 5 times<br>non-smoker risk                            |
| 2     | 0.01  | 7—30                                                                                | 10 times<br>average outdoor<br>level   | 200 chest x-rays<br>per year                          |
| 1     | 0.005 | 3—13                                                                                | Average indoor                         | Non-smoker<br>risk of dying<br>from lung cancer       |
| 0.2   | 0.001 | 1—3                                                                                 | Average outdoor<br>level               | 20 chest x-rays<br>per year                           |


Public domain image.

From EPA Publication OPA-86-004: "A Citizen's Guide to Radon: What It Is and What To Do About It." August 1986.

### 22.01 - Intro to Ionizing Radiation

## **Exposure Sources**

**USGS** graph of the computed terrestrial gamma ray flux at 1m from the ground. Duval, Joseph S., Carson, John M. et al. 2005.



22.01 - Intro to Ionizing Radiation

## **Exposure Sources**

#### **USGS** National Map



Public domain image.

### 22.01 - Intro to Ionizing Radiation

## **The Primordial Nuclides**

Shultis, J. K., and R. E. Faw. *Fundamentals of Nuclear Science and Engineering*, 2nd Edition. CRC Press, 2007.

| <b>Table 5.2.</b> The | 17 isolated | primordial | radionuclides. | Data taken | from GE-NE | [1996]. |
|-----------------------|-------------|------------|----------------|------------|------------|---------|
|-----------------------|-------------|------------|----------------|------------|------------|---------|

| Radion<br>& the I       | uclide<br>Decay Modes        | Half-life<br>(years) | % El.<br>Abund. | Radion<br>& the I        | uclide<br>Decay Modes | Half-life<br>(years)   | % El.<br>Abund. |
|-------------------------|------------------------------|----------------------|-----------------|--------------------------|-----------------------|------------------------|-----------------|
| $^{40}_{19}{ m K}$      | $\beta^- ~{\rm EC} ~\beta^+$ | $1.27\times10^9$     | 0.0117          | $^{50}_{23}{ m V}$       | $\beta^-$ EC          | $1.4\times10^{17}$     | 0.250           |
| $^{87}_{37}\mathrm{Rb}$ | $\beta^{-}$                  | $4.88\times10^{10}$  | 27.84           | $^{113}_{48}{ m Cd}$     | $\beta^{-}$           | $9\times 10^{15}$      | 12.22           |
| $^{115}_{49}{ m In}$    | $\beta^{-}$                  | $4.4\times10^{14}$   | 95.71           | $^{123}_{52}{ m Te}$     | EC                    | $> 1.3 \times 10^{13}$ | 0.908           |
| $^{138}_{57} { m La}$   | EC $\beta^-$                 | $1.05\times10^{11}$  | 0.090           | $^{144}_{60}{ m Nd}$     | $\alpha$              | $2.38\times10^{15}$    | 23.80           |
| $^{147}_{62}{ m Sm}$    | $\alpha$                     | $1.06\times10^{11}$  | 15.0            | $^{148}_{62}{ m Sm}$     | $\alpha$              | $7\times10^{15}$       | 11.3            |
| $^{152}_{64}{ m Gd}$    | $\alpha$                     | $1.1\times10^{14}$   | 0.20            | $^{176}_{71} { m Lu}$    | $\beta^{-}$           | $3.78\times10^{10}$    | 2.59            |
| $^{174}_{72}{ m Hf}$    | $\alpha$                     | $2.0\times10^{15}$   | 0.162           | $^{180}_{73}{ m Ta}$     | EC $\beta^+$          | $> 1.2 \times 10^{15}$ | 0.012           |
| $^{187}_{75}{ m Re}$    | $\beta^-$                    | $4.3\times10^{10}$   | 62.60           | $^{186}_{76}\mathrm{Os}$ | $\alpha$              | $2\times 10^{15}$      | 1.58            |
| $^{190}_{~78}{\rm Pt}$  | α                            | $6.5\times10^{11}$   | 0.01            |                          |                       |                        |                 |

© CRC Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>. Source: Shultis, J. K., and R. E. Faw. Fundamentals of Nuclear Science and Engineering, 2nd Edition. CRC Press, 2007.

### 22.01 - Intro to Ionizing Radiation

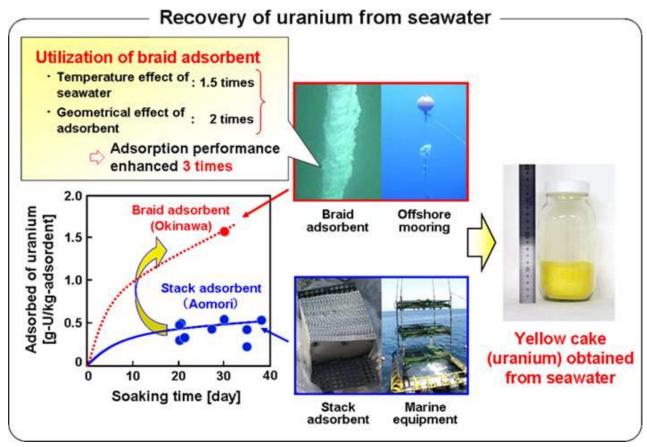
# **Nuclides in Building Materials**

### Data from http://www.physics.isu.edu/radinf/natural.htm

| (NCRP 94, 1987, except where noted) |      |                  |      |                  |           |                  |
|-------------------------------------|------|------------------|------|------------------|-----------|------------------|
|                                     | Urar | nium             | Tho  | rium             | Potassium |                  |
| Material                            | ppm  | mBq/g<br>(pCi/g) | ppm  | mBq/g<br>(pCi/g) | ppm       | mBq/g<br>(pCi/g) |
| Granite                             | 4.7  | 63 (1.7)         | 2    | 8 (0.22)         | 4.0       | 1184 (32)        |
| Sandstone                           | 0.45 | 6 (0.2)          | 1.7  | 7 (0.19)         | 1.4       | 414 (11.2)       |
| Cement                              | 3.4  | 46 (1.2)         | 5.1  | 21 (0.57)        | 0.8       | 237 (6.4)        |
| Limestone<br>concrete               | 2.3  | 31 (0.8)         | 2.1  | 8.5 (0.23)       | 0.3       | 89 (2.4)         |
| Sandstone<br>concrete               | 0.8  | 11 (0.3)         | 2.1  | 8.5 (0.23)       | 1.3       | 385 (10.4)       |
| Dry<br>wallboard                    | 1.0  | 14 (0.4)         | 3    | 12 (0.32)        | 0.3       | 89 (2.4)         |
| By-<br>product<br>gypsum            | 13.7 | 186 (5.0)        | 16.1 | 66 (1.78)        | 0.02      | 5.9 (0.2)        |
| Natural<br>gypsum                   | 1.1  | 15 (0.4)         | 1.8  | 7.4 (0.2)        | 0.5       | 148 (4)          |
| Wood                                | -    | -                | -    | -                | 11.3      | 3330 (90)        |
| Clay Brick                          | 8.2  | 111 (3)          | 10.8 | 44 (1.2)         | 2.3       | 666 (18)         |

22.01 – Intro to Ionizing Radiation

## **Nuclides in Seawater**


### Data from http://www.physics.isu.edu/radinf/natural.htm

| Nuclida      | Activity used          | Activity in Ocean                      |                                     |                           |  |  |
|--------------|------------------------|----------------------------------------|-------------------------------------|---------------------------|--|--|
| Nuclide      | in calculation         | Pacific                                | Atlantic                            | All Oceans                |  |  |
| Uranium      | 0.9 pCi/L              | 6 x 10 <sup>8</sup> Ci                 | 3 x 10 <sup>8</sup> Ci              | 1.1 x 10 <sup>9</sup> Ci  |  |  |
|              | (33 mBq/L)             | (22 EBq)                               | (11 EBq)                            | (41 EBq)                  |  |  |
| Potassium 40 | 300 pCi/L              | 2 x 10 <sup>11</sup> Ci                | 9 x 10 <sup>10</sup> Ci             | 3.8 x 10 <sup>11</sup> Ci |  |  |
|              | (11 Bq/L)              | (7400 EBq)                             | (3300 EBq)                          | (14000 EBq)               |  |  |
| Tritium      | 0.016 pCi/L            | 1 x 10 <sup>7</sup> Ci                 | 5 x 10 <sup>6</sup> Ci              | 2 x 10 <sup>7</sup> Ci    |  |  |
|              | (0.6 mBq/L)            | (370 PBq)                              | (190 PBq)                           | (740 PBq)                 |  |  |
| Carbon 14    | 0.135 pCi/L            | 8 x 10 <sup>7</sup> Ci                 | 4 x 10 <sup>7</sup> Ci              | 1.8 x 10 <sup>8</sup> Ci  |  |  |
|              | (5 mBq/L)              | (3 EBq)                                | (1.5 EBq)                           | (6.7 EBq)                 |  |  |
| Rubidium 87  | 28 pCi/L<br>(1.1 Bq/L) | 1.9 x 10 <sup>10</sup> Ci<br>(700 EBq) | 9 x 10 <sup>9</sup> Ci<br>(330 EBq) | 3.6 x 10 <sup>10</sup>    |  |  |

22.01 – Intro to Ionizing Radiation

## **Uranium from Seawater?**

### http://nextbigfuture.com/2007\_11\_04\_archive.html

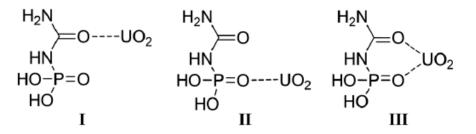


© Next Big Future. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

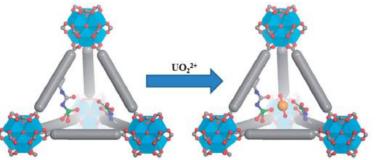
### 22.01 - Intro to Ionizing Radiation

## **Uranium from Seawater!**

### **Chemical Science**


### **RSC**Publishing

### **EDGE ARTICLE**


View Article Online View Journal | View Issue

Highly porous and stable metal–organic frameworks for uranium extraction 1

Cite this: Chem. Sci., 2013, 4, 2396



**Fig. 6** Three uranyl binding motifs for carbamoylphosphoramidic acid investigated by DFT calculations: uranyl bound to carbonyl oxygen (I), uranyl bound to phosphoryl oxygen (II), and bidentate uranyl coordination (III).



**\*ig. 9** Simplified schematic depicting the uranyl-binding pocket formed in the etrahedron of the MOFs.  $UO_2^{2+}$  is coordinated in a monodentate fashion to the phosphoryl oxygen. Distances between oxygen range from 4.5–4.8 Å, accomnodating U–O bond lengths appropriate for binding motif **II–II**.

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

### 22.01 - Intro to Ionizing Radiation

# **Radioactivity in the Body**

Data from http://www.physics.isu.edu/radinf/natural.htm

| Nuclide      | Total Mass of Nuclide<br>Found in the Body | Total Activity of Nuclide<br>Found in the Body | Daily Intake of<br>Nuclides |
|--------------|--------------------------------------------|------------------------------------------------|-----------------------------|
| Uranium      | 90 µg                                      | 30 pCi (1.1 Bq)                                | 1.9 µg                      |
| Thorium      | 30 µg                                      | 3 pCi (0.11 Bq)                                | 3 μg                        |
| Potassium 40 | 17 mg                                      | 120 nCi (4.4 kBq)                              | 0.39 mg                     |
| Radium       | 31 pg                                      | 30 pCi (1.1 Bq)                                | 2.3 pg                      |
| Carbon 14    | 22 ng                                      | 0.1 μCi (3.7 kBq)                              | 1.8 ng                      |
| Tritium      | 0.06 pg                                    | 0.6 nCi (23 Bq)                                | 0.003 pg                    |
| Polonium     | 0.2 pg                                     | 1 nCi (37 Bq)                                  | ~0.6 f                      |

## **Medical Procedures**

Typical Effective Radiation Dose from Diagnostic X Ray—Single Exposure

#### (Mettler 2008)

| Exam               | Effective Dose |
|--------------------|----------------|
|                    | mSv (mrem)     |
| Chest              | 0.1 (10)       |
| Cervical Spine     | 0.2 (20)       |
| Thoracic Spine     | 1.0 (100)      |
| Lumbar Spine       | 1.5 (150)      |
| Pelvis             | 0.7 (70)       |
| Abdomen or Hip     | 0.6 (60)       |
| Mammogram (2 view) | 0.36 (36)      |
| Dental Bitewing    | 0.005 (0.5)    |
| Dental (panoramic) | 0.01 (1)       |
| DEXA (whole body)  | 0.001 (0.1)    |
| Skull              | 0.1 (10)       |
| Hand or Foot       | 0.005 (0.5)    |

#### Mettler FA Jr, et al. *Radiology* 248(1):254-263; 2008.

| v                                     |                |
|---------------------------------------|----------------|
| Examinations and Procedures           | Effective Dose |
|                                       | mSv (mrem)     |
| Intravenous Pyelogram                 | 3.0 (300)      |
| Upper GI                              | 6.0 (600)      |
| Barium Enema                          | 7.0 (700)      |
| Abdomen Kidney, Ureter, Bladder (KUB) | 0.7 (70)       |
| CT Head                               | 2.0 (200)      |
| CT Chest                              | 7.0 (700)      |
| CT Abdomen/Pelvis                     | 10.0 (1,000)   |
| Whole-Body CT Screening               | 10.0 (1,000)   |
| CT Biopsy                             | 1.0 (100)      |
| Calcium Scoring                       | 2.0 (200)      |
| Coronary Angiography                  | 20.0 (2,000)   |
| Cardiac Diagnostic & Intervention     | 30.0 (3,000)   |
| Pacemaker Placement                   | 1.0 (100)      |
| Peripheral Vascular Angioplasties     | 5.0 (500)      |
| Noncardiac Embolization               | 55.0 (5,500)   |
| Vertebroplasty                        | 16.0 (1,600)   |

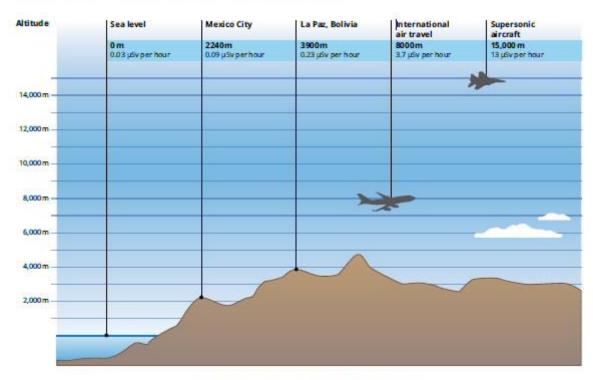
© Radiological Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

### 22.01 - Intro to Ionizing Radiation

## **More Medical Procedures**

Mettler FA Jr, et al. *Radiology* 248(1):254-263; 2008.

Typical Effective Radiation Dose from Nuclear Medicine Examinations (Mettler 2008)


| Nuclear Medicine Scan Radiopharmaceutical                            | Effective Dose |
|----------------------------------------------------------------------|----------------|
| (common trade name)                                                  | mSv (mrem)     |
| Brain (PET) <sup>18</sup> F FDG                                      | 14.1 (1,410)   |
| Brain (perfusion) <sup>99</sup> mTc HMPAO                            | 6.9 (690)      |
| Hepatobiliary (liver flow) 99mTc Sulfur Colloid                      | 2.1 (210)      |
| Bone <sup>99m</sup> Tc MDP                                           | 6.3 (630)      |
| Lung Perfusion/Ventilation <sup>99m</sup> Tc MAA & <sup>133</sup> Xe | 2.5 (250)      |
| Kidney (filtration rate) <sup>99m</sup> Tc DTPA                      | 1.8 (180)      |
| Kidney (tubular function) 99mTc MAG3                                 | 2.2 (220)      |
| Tumor/Infection 67Ga                                                 | 2.5 (250)      |
| Heart (stress-rest) <sup>99m</sup> Tc sestamibi (Cardiolite)         | 9.4 (940)      |
| Heart (stress-rest) <sup>201</sup> Tl chloride                       | 41.0 (4,100)   |
| Heart (stress-rest) <sup>99m</sup> Tc tetrofosmin (Myoview)          | 11.0 (1,100)   |
| Various PET Studies <sup>18</sup> F FDG                              | 14.0 (1,400)   |

© Radiological Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <a href="http://ocw.mit.edu/help/faq-fair-use/">http://ocw.mit.edu/help/faq-fair-use/</a>.

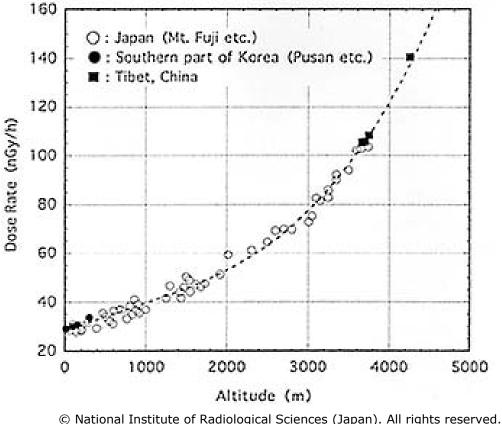
### 22.01 - Intro to Ionizing Radiation

## **Radiation from Altitude**

### http://www.ansto.gov.au/NuclearFacts/Whatisradiation/



#### Cosmic radiation dose rates at different altitudes

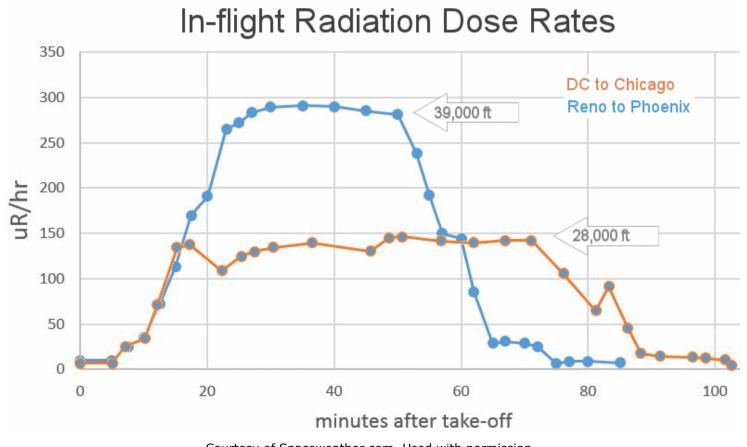

Cosmic radiation dose rates at different altitudes.

© Australian Nuclear Science and Technology Organization (ANSTO). All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

### 22.01 - Intro to Ionizing Radiation

# **Radiation from Flying**

http://www.nirs.go.jp/publication/annual\_reports\_en/1998/5/072.html






22.01 – Intro to Ionizing Radiation

# **Radiation from Flying**

http://www.spaceweather.com - Nov. 16, 2014



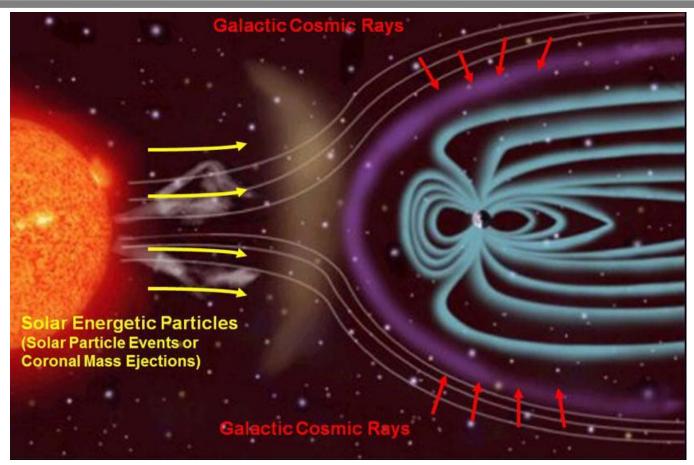

Courtesy of Spaceweather.com. Used with permission.

### 22.01 - Intro to Ionizing Radiation

## **Cosmic Rays – Origin**

#### http://apod.nasa.gov/apod/ap060814.html

**Illustration by Simon Swordy** 




Public domain image, from NASA.

### 22.01 - Intro to Ionizing Radiation

# **Cosmic Rays – Origin**

#### http://photojournal.jpl.nasa.gov/jpeg/PIA16938.jpg



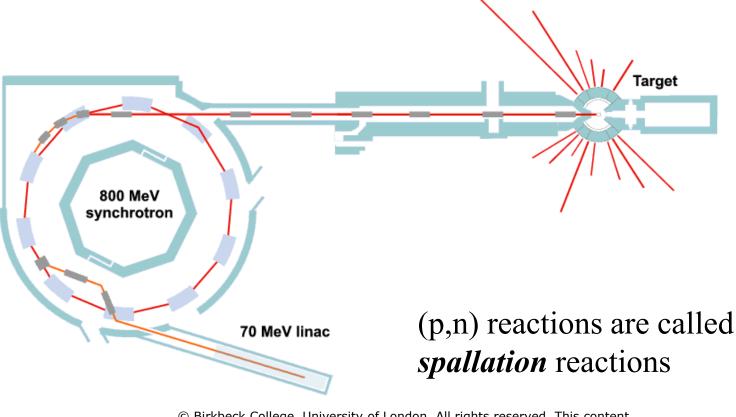
Public domain image, from NASA.

### 22.01 - Intro to Ionizing Radiation

# Solar Cosmic Ions – Origin

Klein, K-L., and G. Trottet. Space Science Reviews 95: 215-225, 2001

### Abstract

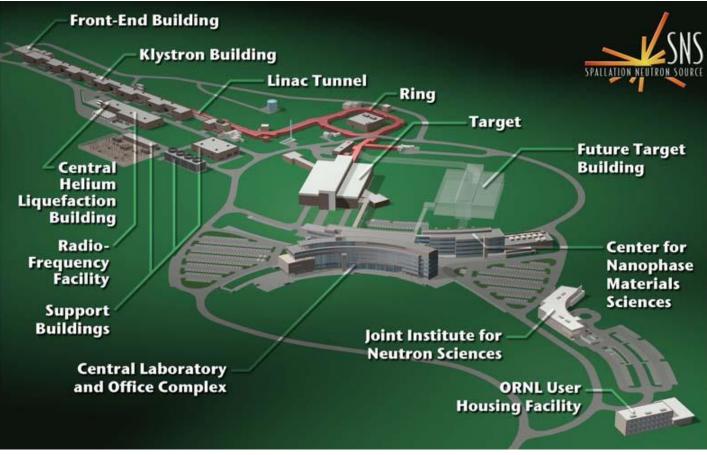

We review evidence that led to the view that acceleration at shock waves driven by coronal mass ejections (CMEs) is responsible for large particle events detected at 1 AU. It appears that even if the CME bow shock acceleration is a possible model for the origin of rather low energy ions, it faces difficulties on account of the production of ions far above 1 MeV: (i) although shock waves have been demonstrated to accelerate ions to energies of some MeV nucl<sup>-1</sup> in the interplanetary medium, their ability to achieve relativistic energies in the solar environment is unproven; (ii) SEP events producing particle enhancements at energies 100 MeV are also accompanied by flares; those accompanied only by fast CMEs have no proton signatures above 50 MeV. We emphasize detailed studies of individual high energy particle events which provide strong evidence that time-extended particle acceleration which occurs in the corona after the impulsive flare contributes to particle fluxes in space. It appears thus that the CME bow shock scenario has been overvalued and that long lasting coronal energy release processes have to be taken into account when searching for the origin of high energy SEP events.

# **Making Cosmogenic Nuclides**

- Protons enter the atmosphere
- *Spallation* occurs, releasing neutrons
- Neutrons combine with key nuclides to produce <sup>3</sup>H, <sup>14</sup>C
  - ${}^{14}N(n,p){}^{14}C$
  - ${}^{14}N(n,{}^{3H}){}^{12}C$

## **Spallation Sources on Earth**

http://pd.chem.ucl.ac.uk/pdnn/inst3/pulsed.htm




© Birkbeck College, University of London. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

### 22.01 - Intro to Ionizing Radiation

## **Spallation on Earth – The SNS**

#### http://neutrons2.ornl.gov/facilities/SNS/works.shtml



Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy.

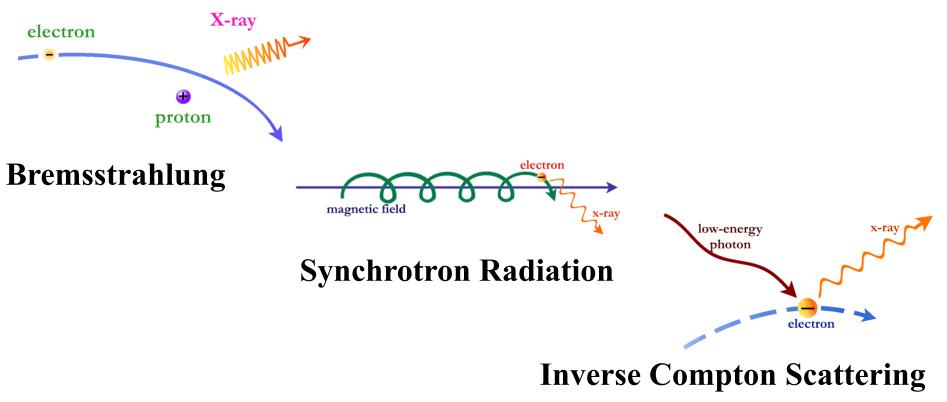
### 22.01 - Intro to Ionizing Radiation

## **Spallation on Earth – The SNS**

#### http://neutrons2.ornl.gov/facilities/SNS/works.shtml






Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy.

### 22.01 - Intro to Ionizing Radiation

## **Nuclear Craziness from Electrons**

http://chandra.harvard.edu/resources/illustrations/x-raysLight.html

Electrons can also create high-energy gamma rays by...



Courtesy of NASA/CXC/SAO. Illustrations by S. Lee.

22.01 – Intro to Ionizing Radiation

## **Inverse Compton Scattering**

http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

Content removed due to copyright restrictions. See p. 10 in http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

### Identifying Radio Sources with Inverse Compton Scattering http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

Content removed due to copyright restrictions. See p. 14 in http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

## What Happens to the Electrons?

http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

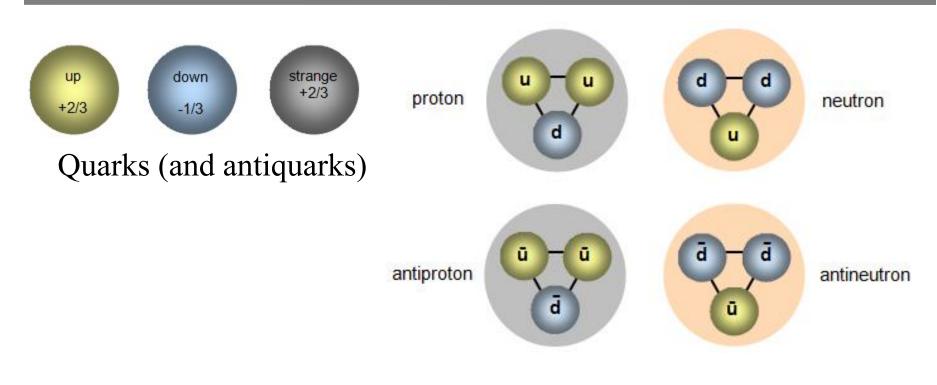
Content removed due to copyright restrictions. See p. 15 in http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

## **Proton Collisions Create Pions**

http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

Content removed due to copyright restrictions. See p. 25 in http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

22.01 – Intro to Ionizing Radiation

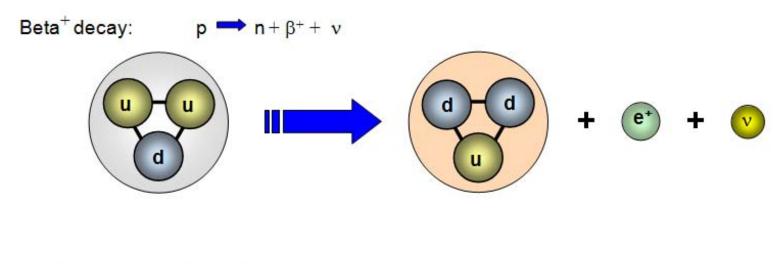

## **Neutral Pions Create Gammas**

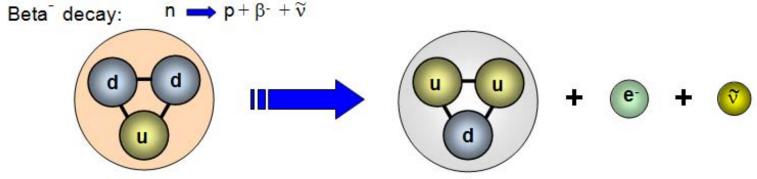
http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

Content removed due to copyright restrictions. See p. 26 in http://eud.gsfc.nasa.gov/Volker.Beckmann/school/download/Longair\_Radiation3.pdf

## Pions – A Short Detour into Subatomic Physics

http://schoolphysics.co.uk/age16-19/Nuclear%20physics/Nuclear%20structure/text/Quarks\_/index.html

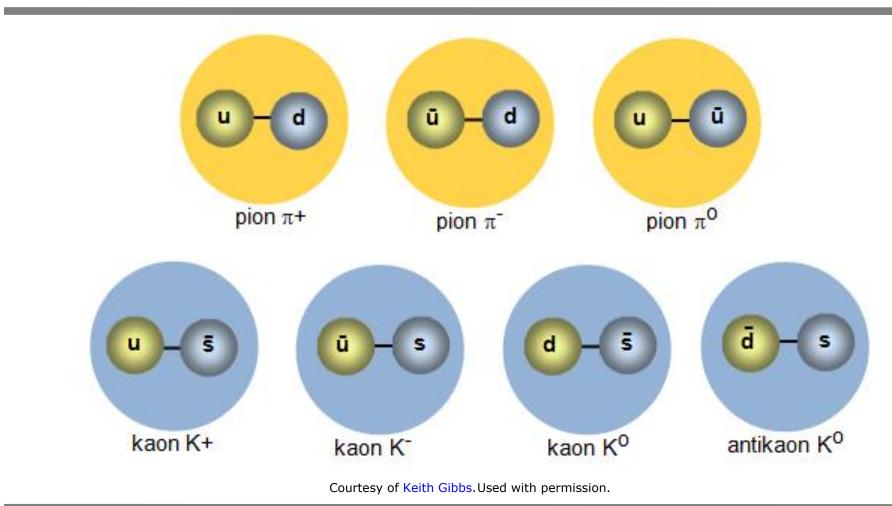




Courtesy of Keith Gibbs. Used with permission.

### 22.01 - Intro to Ionizing Radiation

## Pions – A Short Detour into Subatomic Physics

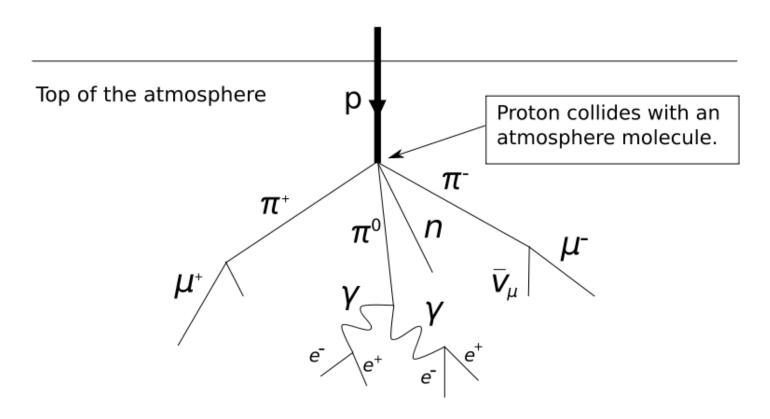
http://schoolphysics.co.uk/age16-19/Nuclear%20physics/Nuclear%20structure/text/Quarks\_/index.html






Courtesy of Keith Gibbs. Used with permission.

22.01 - Intro to Ionizing Radiation

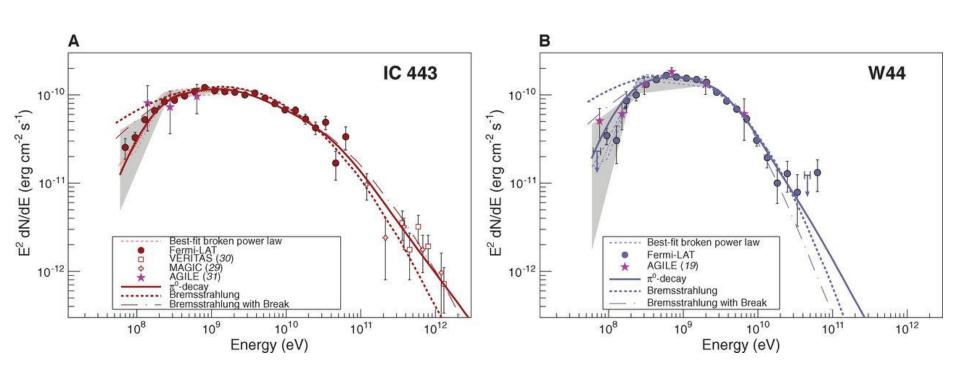

# **Pions – A Short Detour into Subatomic Physics** http://schoolphysics.co.uk/age16-19/Nuclear%20physics/Nuclear%20structure/text/Quarks\_/index.html



### 22.01 – Intro to Ionizing Radiation

## **Galactic Cosmic Ray Origins**

"Atmospheric Collision" by User:SyntaxError55, Wikimedia Commons

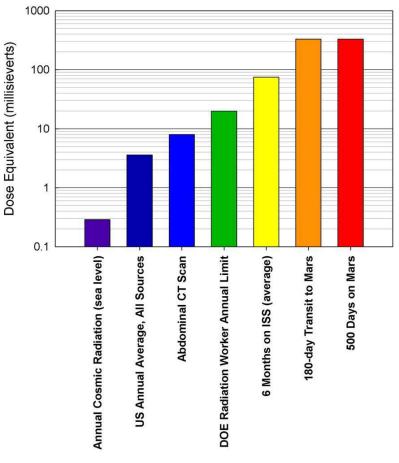



© Wikimedia User:SyntaxError55. License CC BY-SA 3.0. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

### 22.01 - Intro to Ionizing Radiation

## **Evidence for Pion Decay**

Ackerman, M., et al. Science 339 no. 6121 (2013): 807-811 doi:10.1126/science.1231160




© AAAS. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

### 22.01 – Intro to Ionizing Radiation

## What About Space Travel?

#### http://photojournal.jpl.nasa.gov/jpeg/PIA17601.jpg



Public domain image, by NASA/JPL-Caltech/SwRI.

### Background Radiation, Slide 46

### 22.01 – Intro to Ionizing Radiation

MIT OpenCourseWare http://ocw.mit.edu

22.01 Introduction to Nuclear Engineering and Ionizing Radiation Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.