
	 	

	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	
 	 	 	
 	 	 	 	 	 	 	 	 	

 	 	
	

	 	 	
 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
	

	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	
 	
 	
 	
 	 	 	 	 	
 	 	 	 	 	 	 	

	
	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	

	
	 	 	 	 	

 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	

 	

21M.385 Lecture 	Notes

Lecture 3

Anatomy of real-time app
•	 The main	 application	 loop	 - sometimes	 called game loop	 - is usually tied to the screen	 refresh

rate, which is	 60Hz. Game frame-rates	 are therefore 60Hz or	 sometimes	 30Hz, giving 16.6ms	 (or	
33.3ms) of time to	 draw a single frame.

•	 Every frame has 3 steps: Process input, Poll/Update animation	 state, Draw stuff on screen.
•	 Responding to user input (keyboard, mouse, gamepad, etc..) can happen in two ways:

•	 Polling – manually query the state of input-device every	 time through the game	 loop.
•	 Event driven	 – receive a callback - like on_keydown() – when something interesting happens

•	 Kivy framework (adapted for	 use in this class)	 has:
•	 Polling – on_update() gets called every	 frame. Can query mouse position with

get_mouse_pos().

•	 Events – on_touch_down(),	 on_touch_move()
•	 Drawing happens automatically by Kivy. See object-based drawing below.

•	 Other	 examples	 of framework:	Processing 	(Java), 	p5.js 	(Javascript), 	Unity 	(C#), 	Unreal 	(C++).

Read the Docs
•	 Read the Kivy docs: https://kivy.org/docs/gettingstarted/intro.html has a lot of good	 stuff. We

will not use everything in this class (in particular, we are avoiding the Kv Design Language).
•	 And the Kivy API reference: https://kivy.org/docs/api-kivy.html

Example – mouse events and	 mouse	 polling
• We are familiar with keyboard events from before. You can also	 respond to	 mouse events:

• on_touch_down()
5

• on_touch_up()
5
• on_touch_move()
5

•	 And Polling mouse position with get_mouse_pos()
•	 Note 2D coordinate system - (0,0)	 is bottom-left.

Object-based	 drawing
•	 Unlike other frameworks, Kivy uses a list of instruction objects to render	 onto the screen.

Drawing is done for you under the hood.
•	 This is not the same as immediate-mode drawing (like Processing), which	 uses draw-commands.	

In Processing, you must	 call “draw circle” every frame.
•	 In Kivy, to draw a circle, you instantiate a	 Circle object (well, Ellipse,	actually) 	and 	add 	it 	to 	the

canvas of the main window. The canvas is the list of	 instructions that	 Kivy will draw every frame.
•	 Two types of instructions:

•	 Drawing Instructions (Ellipse, Rectangle, Line)
•	 Context Instructions (Color, Translate, Rotate, Scale – described	 later)

Examples	 – a	 bunch of colored circles
•	 Add a circle to the canvas each time	 the	 mouse	 is clicked.
•	 Use canvas.add(obj) to add a drawable item to the canvas.
•	 To change the color, create a Color instruction and add it to the canvas
•	 Kivy then goes through the canvas instructions in order.
•	 Example of objects on	 the canvas stack:

•	 Color(1,0,0)

https://kivy.org/docs/api-kivy.html
https://kivy.org/docs/gettingstarted/intro.html

• C**')/#A)-/bA969B6 /';#bAV96V9BB
• P-*-4A96@69B
• C**')/#A)-/bA@996@99B6 /';#bA>96>9BB
• !"'/ 7'** 04&7 & 4#0 +'4+*# -5 0'&%#,#4 V9$&(0$&$K*2# +'4+*# -5 0'&%#,#4 >9<

• ^-,# ,"# %,2!#$%.$!(" 3(!"$ -5 &(-KR#+, AK-,,-% *#5,B< P&(&00$&(-55/#, /- ,"&, +'4+*# '/ +#(,#4#06
-4 2/# "#*)#4 +*&// 6:997,1"<

• O##)'(1 ,4&+J -5 ,"#/# -KR#+,/ &**-7/ 2/ ,- &('%&,# -4 +"&(1# ,"#'4 '(','&* /,&,#D
• %-0'53 &(-KR#+,c/)&4&%#,#4/< C<1<6 1"9>;2%9%8;8/<5?5(8@5/@5<)5
• 2-'4-1<8"0%4"(%<=) ,- 4#%-?# &(-KR#+,$54-% ,"# '(/,42+,'-(*'/,< S(*3 2/# 2-'4-1;29"-8()

'5$(- -(# #*/# '/ 2/'(1 ,"&, +&(?&/<

B2<. %8"8 >3"*C!
• C?#43,"'(1 04&7($K-'*/ 0-7($,- ,4'&(1*#/

• C**')/# '/ 4#&**3 R2/, & /#, -5 ,4'&(1*#/<]-2$+&($+"&(1# W -5 /#1%#(,/ ,- /## ,"'/<
• !"'/ '/ 2/#52* 5-4 >H6 7"'+" '/ 7"&, -)#(=Z '/)4'%&4'*3 &K-2,<

• I#(0#4 Q,&,# A+-*-46 *-+&,'-(d&,4'T . I-,&,'-(6 !4&(/*&,'-(6 Q+&*#B

D,-30": E*8$&%#$2,*8
• Y"#(%&J'(1 %-4# +-%)*#T 04&7'(1 -KR#+,6 ', '/ 2/#52* ,- #(+&)/2*&,#< [+2/,-% -KR#+, +&(

'("#4', 54-% A'1.8+2.7%'B8%+,<$\,$K#"&?#/$*'J# & 2-'4-1 A3-2 +&(&00 '(/,42+,'-(/ ,- ',B< e2,$',$
&*/-$52(+,'-(/ &/ &('(/,42+,'-(',/#*5<]-2 +&(&00 ,"'/ +2/,-% -KR#+, '(,-$&$0'55#4#(, 2-'4-1<

• Q##$,"#$-KR#+, C+<<9" '(*#+,24#><)3<

B". F&+-"')*2-+$2,*
• \(J#3 54&%# &('%&,'-(6 &$/#, -5)-'(,/ &4#$)4#.0#5'(#0$-?#4 &$,'%# 4&(1#< C&+"$)-'(, '/ &$,'%#6

?&*2#$)&'4 A+&**#0 &$J#3$54&%#B< !-$5'(0 &$?&*2#$&, &$/)#+'5'+ ,'%# '(K#,7##(J#3 54&%#/6$2/#$&(
'(,#4)-*&,'-(52(+,'-(6$/2+"$&/$*'(#&4$'(,#4)-*&,'-(<

• Q##$"#*)#4 +*&// DEF'705'(15T2,'*<)3 7"'+" 0#5'(#/ ?&*2#/ &,)-'(,/ '($,'%#6$&(0$*'(#&4*3
'(,#4)-*&,#/ K#,7##(,"-/# ?&*2#/<

• G-7'H7$/".I /"-7/$&('%&,'-(/$-5 & +'4+*#c/$/';# &(0)-/','-(<
• \,$'/ 2/#52* ,- "&?# &2,-%&,'+ (*+,'$ 4!5,$!1, 1.".2,1,"$ K&/#0 -($2)0&,'(1 &($-KR#+,c/

&('%&,'-(D %<="2.;%'*+,$-."() 4#,24(/$J8+" ,- J##) 1-'(1 &(0 E-91"57"#(-KR#+, '/ 0-(# &(0
/"-2*0 K# 4#%-?#0< !"'/ 2/#/ ,"# /&%#)"'*-/-)"3 &/ &20'- 1#(#4&,-4/f

7.*+-2#8 G H6.82#8)*2-+$2,*
• H3(&%'+/.K&/#0 &('%&,'-($/3/,#%/ &4# 2/#52* 5-4 &('%&,'(1 %-,'-(< E-/','-(/ &4# +&*+2*&,#0 ?'&

,'%#.K&/#0 52(+,'-(#?&*2&,'-(<
• \(&)"3/'+/.K&/#0 /3/,#%6 ^#7,-('&($52(+,'-(/ &4# +&*+2*&,#0 2/'(1 (2%#4'+&* '(,#14&,'-(<

• ! " # $" % ! " # ' " ($"
•) " # $" %) " # ! " ($"
• P-**'/'-('/ "&(0*#0$K3 4#?#4/'(1$?#*-+',3 &(0$%2*,')*3'(1$K3 &$0&%)'(1$5&+,-4<

• G-7'H7$/".K /"-7/$& /'%)*#)"3/'+/.K&/#0 &('%&,'-(<

http:gfxutil.py
http:lecture3.py

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	
	 	 	

		
	 	

 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	

 	
 	
 	

 	 	 	 	 	 	 	 	 	 	
	 	

 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	
 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	
 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	
	

	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	
 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	
	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	

	
	

 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	 	 	 	

•	 Note that the basic animation framework is identical to the key frame system – on_update() is
called and returns	 False when the object is done. In fact,	this 	code 	has 	been 	encapsulated 	into a
helper class	 called AnimGroup.

Reference Frames
•	 OpenGL supports reference frame instructions in addition to draw instructions. Each such

instructions modifies the graphics context Transform matrix. These are:
•	 Translate
•	 Rotate
•	 Scale

•	 Kivy has canvas instruction objects Translate,	 Rotate,	and Scale that	 modify the graphics
context accordingly.

•	 MainWidget6 shows	 a simple example using Translate and Rotate.
•	 PushMatrix saves	 the current Transform Matrix. Later	 on, PopMatrix restores	 the Transform

matrix to its previous value.
•	 MainWidget7 draws a	 flower using	 these	 techniques.
•	 Any of these transforms can be referenced and be used later to animate portions of the reference

frame tree.

More Graphics Examples
•	 A	 few more examples of primitives – Lines, Bezier lines, Rectangles, using	 textures, and color

alpha. See	 more_primitives.py
•	 Dynamic Lines / Dots.	Just 	lines 	and 	dots 	moving 	around.	See	 moving_dots.py
•	 Mesh object – all OpenGL	 draw-objects are meshes. Meshes are collection of connected triangles

that	 can form very complex 3D shapes. Textures (2D bitmaps)	 can be applied to Meshes. Mesh
vertices can be	 animated. See	 meshtest.py

•	 Particle System – a	 large	 collection of textured squares (each a	 “particle”) with dynamics-based
animation, size	 animation, and color animation applied to	 all particles. Together they	 form some	
awesome	 looking	 effects. See	 particle_paint.py

Combining graphics and music
•	 Real-time graphics can reinforce the sound that	 we hear	 if there	 is a	 tight coupling	 (ie, a clear

mapping)	 between	 sound and visuals.
•	 In the simplest	 case, you may	 have	 a	 one-to-one correspondence between notes and	 visual

elements: one	 shape	 per note, with the	 duration of the	 note	 matching	 the	 duration of the	 shape.
•	 Graphics may have mismatched duration with music – visuals can remain visible	 longer than the	

sound to help remember	 events	 of the past. Visuals	 can disappear	 faster	 than the sound to
highlight the appearance of new sounds.

•	 There are many graphical parameters to vary: shape, size, color (including hue, and brightness),	
texture, as well as different types of motion.

•	 There are many musical properties to illuminate: pitch, volume, timbre,	note 	duration,	 rhythmic
elements, tempo, chords,	melodic 	lines,	 and abstract properties such as mood and energy.

•	 You	 can	 create mappings between	 musical properties and graphical parameters to highlight
certain aspects	 of the music.

•	 One paper the addresses some of these ideas is: Principles of Visual Design	 for Computer Music,	by
Ge Wang.

Implementation 	Notes
•	 Callback functions are	 very	 useful in managing	 the	 code	 complexity. When an event is detected in

an object (like	 a	 physics object), it can call a	 callback function to indicate that	 a particular event
happened. That callback	 function (which	 is defined	 on a different object) can do	 non-graphical
things like play a note.

http:particle_paint.py
http:meshtest.py
http:moving_dots.py
http:more_primitives.py

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

