21M.385 Lecture Notes

Lecture 1

Sound

e Sound = vibrations of the air

e Vibrations can be modeled as physical systems - mass/spring or pendulums

e Most vibrations are sinusoidal and can be modeled with sine waves.

e Example of tuning fork.

e Sine waves, like pressure changes in the air, are added together.

e Microphones: convert physical movement (pressure change) of air into an electrical signal.
e Speakers: convert an electrical signal back into pressure changes in the air

Audio Representation

ADC (Analog to Digital Converter): turns voltage/current into discrete numbers

DAC: turns numbers back to an analog voltage/current

In the digital / computer space, values are discrete, in both time and quanta precision.
e Time - sampled 44,100 times per second (sometimes 48,000 or higher).

e Precision/quantization - 16bits per value (~65k discrete values) is enough

e “44k/16” is CD-quality audio

Why choose 44100?

e Nyquest sampling rate: undersampling causes aliasing

e Threshold of human hearing: ~20,000 Hz

Mono vs Stereo

Python

Handy quick language ref: http://rgruet.free.fr/PQR27 /PQR2.7.html

pyAudio - interface for sending/receiving audio data. Note parameters:

format: float32 (instead of int16)

number of channels: 1 (mono) or 2(stereo)

frames per buffer

sampling rate

device ID

input / output

pyAudio expects data as a python byte string.

Two modes of operation:

e Single-threaded & possibly blocking, with variable buffer size.

e Multi-threaded callback, with fixed buffer size.

o We will use single-threaded. It avoids threading complications at the risk of audio starvation.
Frames Per Buffer: internal buffer size used by audio driver.

e Smaller: more responsive / lower latency, with increased risk of buffer under-run.
e Larger: less responsive / higher latency, with less risk of buffer under-run.

Examples

Output noise (random values)

e Change loudness with gain multiplier.

Sine function to create a tone

Adjust frequency of sine function to change pitch

Fix sine popping problem by keeping track of current frame

Switch to using numpy to do math quickly. The difference is profound (20-25x speedup).

http://rgruet.free.fr/PQR27/PQR2.7.html

Modeling Pitch

e y(t) = sin(wt) = sin(2wft), where fis the frequency in Hertz.
e For discrete time, n (sample number) must replace t.

e t=nT.S5 = 1/T

e y=ysin(2nfn/S,), where S, = 44100.

e By the way, concert A = 440Hz.

Kivy Framework
e C(Create a BaseWidget class to make a Kivy application. Note some features:
e on_key down() and on_key_up() to handle keyboard presses
e Use Label to display text on screen (use the helper function topleft_label() to create a
Label at the top-left corner of the screen)
e Use on_update() to update stuff every screen frame (usually 60fps).
e C(Create a python audio class (Audio) that encapsulates pyAudio.
e C(Create a generator to feed data into audio.

Examples
e Use Label to display text on screen and modify it with Label. text
e Pressing different keys to change pitch.

More Kivy Application

e Useup/down arrow keys to change gain.

e Use left/right arrows to change frequency
e Listen to aliasing when frequency goes too high.

e Anote on Audio - choosing a good device index
e Should (hopefully just work). Different on Mac vs PC. PC should use ASIO drivers.
e Run../common/audio.py to see choices.

Generators

e Useful building block model for managing audio objects and software complexity
e Generators can be chained together into data flow graphs

e Mixer is a class that can take multiple generators and add them together.

Debug Audio

e AudioWriter can help you see the audio sent out the speaker. This is a great debugging tool!
e Audio data written to a .wav file

e View the wav file in Audacity.

Perception
e Pitch perception
e Hearing range: 20Hz - 20,000Hz. But varies with age, gender, and experience.
e Sweet spotis 30Hz-5,000Hz (like a piano! A0=27.5Hz, C8=4186Hz). Beyond that, we don’t
hear it as well-defined pitch.
e Loudness perception
e Equalloudness curve. Sensitivity varies with frequency.
e Sweet spot (most sensitive) is ~1,000Hz - 3,000Hz
e Both pitch and loudness perception are logarithmic - not linear!

Modeling Intervals

The most “pure” interval - the octave. All cultures have octave equivalence.
Pitch perception is not linear. It is exponential (or geometric). F2 = 2 * F1.
Western scale: 12 “equal” divisions per octave:

o F2=d*d*d*d*d*d*d*d*d*d*d*d*F1

o (= 1%/?

e This is the equal tempered scale.

But, perfectly in-tune intervals are ratios of small numbers

e Octave=2

e Fifth=3/2

e Fourth=4/3

e Major Third =5/4

e Minor Third =6/5

(3=15) # (¢ = 1.498). Or worse: (2 = 1.25) # (d* = 1.260)

Modeling Timbre

Pressure waves add together linearly. We model many simultaneous sounds by adding them.
Example of a plucked string vibrating.

Modal vibrations: with fundamental frequency f (and w = 2 f), we can model a complex modal
tone as: y = a, sin(wt) + a, sin(2wt) + a5 sin(3wt) + -

Note the range of y € [-1.0,1.0]. Outside this range, we get clipping. Bad.

Fourier series: with proper values for a, any repeating waveform can be created.

Some geometric waveform examples:

1 1 1

. Squarewave:al=1,a2=0,a3=§,a4=O,a5=§,a6=0,a7=;...
1 1 1 1 1

. Sawtoothwave:a1=1,a2=—E,a3=§,a4=— A5 = 2,06 = — =, 07 = ..

1 1

—,as = 1,a¢4 = 0,a;, = —... Note that

25’ 176 "7 T 49

technically, a triangle wave is a sum of cosines. Our ears can’t hear the difference though.
When creating these waveforms, save them and inspect what they look like in Audacity.

1| &1

. 1
e Triangle wave:a; = 1,a, =0,a; = 5 @ = 0,as

Modeling Envelopes

Amplitudes a change over time.

Overall tone changes over time.

Basic amplitude envelope controls gain as a function of time.

ADSR - (Attack, Decay, Sustain, Release) is a common envelope modeling synthesis technique.
For now, a simplified form: Attack/Decay with a predefined duration.

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

