
	 	

	 	
	

 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
	

	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	

 	 	 	
 	 	 	 	 	 	
 	 	 	

 	 	 	
	

	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	

 	 	 	 	
 	 	 	 	 	 	 	
 	 	 	
 	 	
 	 	
 	 	 	

 	 	 	 	 	 	 	
 	 	 	 	

 	 	 	 	
 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 		
 	 	 	 	 	 	 	 	 	

	
	

 	 	 	 	
 	 	 	 	

 	 	
 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	

21M.385 Lecture 	Notes

Lecture 1
Sound
• Sound = vibrations of the	 air
• Vibrations can	 be modeled as physical systems – mass/spring or pendulums
• Most vibrations are sinusoidal and can be modeled with sine waves.
• Example of tuning fork.
• Sine	 waves, like	 pressure changes in	 the air, are added together.
• Microphones: convert physical movement (pressure change) of air into	 an electrical signal.
• Speakers: convert an electrical signal back	 into pressure changes in	 the air

Audio Representation
• ADC (Analog to Digital Converter): turns voltage/current into	 discrete	 numbers
• DAC: turns numbers back to an analog voltage/current
• In the digital / computer space, values are discrete, in both time and quanta precision.

• Time – sampled 44,100 times	 per	 second (sometimes	 48,000 	or 	higher).
• Precision/quantization – 16bits per value (~65k	 discrete values) is enough
• “44k/16”	 is	 CD-quality audio

• Why choose 44100?
• Nyquest sampling rate: undersampling causes aliasing
• Threshold of human	 hearing:	~20,000 	Hz

• Mono vs Stereo

Python
• Handy quick language ref: http://rgruet.free.fr/PQR27/PQR2.7.html
• pyAudio – interface for sending/receiving audio data. Note parameters:

• format: float32 (instead of	 int16)
• number of channels: 1 (mono) or 2(stereo)
• frames per buffer
• sampling rate
• device ID
• input / output

• pyAudio expects data as a python	 byte string.
• Two modes of operation:

• Single-threaded & possibly blocking,	with 	variable 	buffer 	size.
• Multi-threaded callback,	with 	fixed 	buffer 	size.
• We will use single-threaded. It	 avoids threading complications at	 the risk of audio starvation.

• Frames Per Buffer: internal buffer size used	 by	 audio	 driver.
• Smaller: more	 responsive	 /	 lower latency, with increased risk of buffer under-run.
• Larger: less responsive / higher	 latency, with less	 risk of buffer	 under-run.

Examples
• Output noise (random values)

• Change loudness with	 gain multiplier.
• Sine	 function to	 create	 a	 tone
• Adjust frequency of sine function to change pitch
• Fix	 sine popping	 problem by	 keeping track of current	 frame
• Switch to	 using	 numpy	 to	 do	 math quickly. The	 difference	 is profound (20-25x	 speedup).

http://rgruet.free.fr/PQR27/PQR2.7.html

	
	 	

 	 	 	 	 	 	
 	 	 	 	 	 	 	
 	 	
 	 		 	
 	 	 	 	 	 	
	

	 	
 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	
 	 	 	 	 	 	
	

	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	
	

	 	 	
 	 	 	 	 	 	 	
 	 	 	 	 	 	

 	 	 	 	
 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	

	
	

 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	
 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	

	
	

 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	
 	 	

 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 		

Modeling Pitch
• 𝑦(𝑡) = sin 𝜔𝑡 = sin 2𝜋𝑓𝑡 ,	where f	 is the frequency in Hertz.
•	 For discrete time, n (sample number)	 must	 replace 𝑡.
• 𝑡 = 𝑛𝑇.	 𝑆C = 1 𝑇
•	 𝑦 = sin (2𝜋𝑓𝑛/𝑆C),	where 𝑆C = 44100.
•	 By the way, concert A	 = 440Hz.

Kivy Framework
•	 Create a	 BaseWidget class	 to make a Kivy application. Note	 some features:

• on_key_down() and on_key_up() to handle keyboard presses
•	 Use Label to display text	 on screen (use the helper	 function topleft_label() to create a

Label at the	 top-left corner of	 the screen)
•	 Use on_update() to update stuff every screen frame (usually 60fps).

•	 Create a	 python audio	 class (Audio)	 that	 encapsulates pyAudio.
•	 Create a	 generator to	 feed data into audio.

Examples
•	 Use Label to display text	 on screen and modify it	 with Label.text
•	 Pressing different keys to	 change pitch.

More Kivy Application
•	 Use up/down arrow keys to change gain.
•	 Use left/right arrows to change frequency

•	 Listen to	 aliasing	 when frequency	 goes too	 high.
•	 A	 note on Audio – choosing a good device index

•	 Should (hopefully	 just work). Different on Mac vs PC. PC	 should use	 ASIO drivers.
•	 Run ../common/audio.py to see choices.

Generators
•	 Useful building block model for managing audio objects and software complexity
•	 Generators can be chained together into data flow graphs
•	 Mixer is a class that can take multiple generators and add them	 together.

Debug Audio
•	 AudioWriter can help you see the audio sent out the speaker.	This 	is 	a great debugging	 tool!
•	 Audio data written to a	 .wav	 file
•	 View the wav file in	 Audacity.

Perception
•	 Pitch	 perception

•	 Hearing range: 20Hz – 20,000Hz. But varies with	 age, gender, and	 experience.
•	 Sweet spot is 30Hz-5,000Hz (like a piano! A0=27.5Hz, C8=4186Hz). Beyond that, we don’t	

hear it as well-defined	 pitch.
•	 Loudness perception

•	 Equal loudness curve. Sensitivity varies with frequency.
•	 Sweet spot (most sensitive) is ~1,000Hz - 3,000Hz

•	 Both pitch and loudness perception are logarithmic – not linear!

	
	 	

 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	
 	 	 	 	 	 		

 	 	 	 	 	 	 	 	 	
 	 	 	
 	
 	
 	 	 	 	
 	 	 	 	

 	 	 	 	

	
	 	

 	 	 	 		 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	
 	 	 	

 	 	

 	 	 	

 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	

 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 		
 	 	 	 	 	
 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	
 	 	 	 	 	 	 	 	 	 	 	
 	 	 	 	
	
	
	

Modeling Intervals
• The most “pure” interval – the octave. All cultures have octave equivalence.
• Pitch	 perception	 is not linear. It is exponential (or geometric). F2 =	2	* F1.
• Western scale: 12 “equal” divisions per octave:

•	 F2 = d	 * d	 * d	* d	* d	* d	* d	* d	* d	*	d *	d *	d *	F1
DE 2•	 𝑑 =

• This is the equal tempered scale.
• But, perfectly in-tune intervals are ratios of small numbers

•	 Octave = 2
• Fifth	 =	 3/2
• Fourth	 =	 4/3
• Major Third = 5/4
• Minor Third = 6/5
= ?•
<
= 1.5 ≠ (𝑑A = 1.498).	Or 	worse:

>
= 1.25 ≠ (𝑑> = 1.260)

Modeling Timbre
• Pressure waves add	 together linearly. We model many simultaneous sounds by adding them.
• Example of a plucked string vibrating.
•	 Modal vibrations: with fundamental frequency f (and 𝜔 = 2𝜋𝑓),	 we can model a complex modal

tone as: 𝑦 = 𝑎; sin 𝜔𝑡 + 𝑎< sin 2𝜔𝑡 + 𝑎= sin 3𝜔𝑡 + ⋯
• Note the range of 𝑦 𝜖 [−1.0,1.0]. Outside this range, we get clipping. Bad.
• Fourier series: with	 proper values for a,	any 	repeating 	waveform 	can 	be 	created.
• Some	 geometric waveform examples:

; ; ;•	 Square	 wave: 𝑎; = 1, 𝑎< = 0, 𝑎= =
=
, 𝑎> = 0, 𝑎? =

?
, 𝑎@ = 0, 𝑎A =

A
…

; ; ;
• Sawtooth wave: 𝑎; = 1, 𝑎< = −
; , 𝑎= = , 𝑎> = −

; , 𝑎? = , 𝑎@ = −
; , 𝑎A = A

…
< = > ? @

; ; ;• Triangle wave: 𝑎; = 1, 𝑎< = 0, 𝑎= = , 𝑎> = 0, 𝑎? = , 𝑎? = 1, 𝑎@ = 0, 𝑎A = >B
… Note that

B <?
technically, a triangle wave is a sum of cosines. Our	 ears can’t	 hear	 the difference	 though.

• When creating these waveforms, save them and inspect what they look like in Audacity.

Modeling Envelopes
• Amplitudes a change over time.
• Overall tone changes over time.
• Basic amplitude envelope controls gain as a function of time.
• ADSR	 – (Attack, Decay, Sustain, Release)	 is a common envelope modeling synthesis technique.
• For now, a	 simplified	 form: Attack/Decay	 with	 a	 predefined	 duration.

MIT OpenCourseWare
https://ocw.mit.edu

21M.385 Interactive Music Systems
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu
https://ocw.mit.edu/terms
http:https://ocw.mit.edu

