
Lab #3 - Introduction to MOOS
2.S998 Unmanned Marine Vehicle Autonomy, Sensing and Communications

1

2

Contents

1 Overview and Objectives 5
1.1 Preliminaries . 5
1.2 MOOS vs. MOOS-IvP . 5
1.3 More MOOS / MOOS-IvP Resources . 6
1.4 The MOOS Architecture . 6

2 Launching the MOOSDB 8

3 Scoping the MOOSDB 9
3.1 Scoping with uXMS . 9
3.2 Scoping with uMS . 10

4 Poking the MOOSDB 12

5 Launching MOOS Missions with pAntler 14

6 Scripted Pokes to the MOOSDB 16

7 A Simple Example with pXRelay 18

8 If Time Permits... 20

3

4

1 Overview and Objectives

This lab will introduce MOOS to new users. It assumes nothing regarding MOOS background.
The goals of this lab are to (a) understand the publish-subscribe architecture, (b) get comfortable
launching and interacting with the MOOSDB, (c) understand how to generated scripted interactions
with the MOOSDB, (d) understand how the logger operates and basic tools for examining log files,
and (e) experiment with MOOS connections between machines.

1.1 Preliminaries

This lab does assume that you have a working MOOS-IvP tree checked out and installed on your
computer. To verify this make sure that the following executables are built and findable in your
shell path:

$ which MOOSDB
/Users/you/moos-ivp/MOOS/MOOSBin/MOOSDB
$ which uTimerScript
/Users/you/moos-ivp/bin/uTimerScript
$ which mykill
/Users/you/moos-ivp/scripts/mykill

1.2 MOOS vs. MOOS-IvP

What is the relationship between MOOS and MOOS-IvP? MOOS-IvP is a superset of MOOS. The
additional components include another architecture, the IvP Helm behavior-based architecture, and
several additional MOOS applications. This is the nested repository concept depicted in Figure 1.

Figure 1: Nested Repositories: The MOOS-IvP tree contains the Oxford MOOS tree and additional modules from
MIT including the Helm architecture, Helm behaviors and further MOOS applications.

5

1.3 More MOOS / MOOS-IvP Resources

We will only just touch the MOOS basics today. A few further resources are worth mentioning for
following up this lab with your own exploration.

•	 See the slides from the today’s class which give a bit more background into MOOS and
MOOS-IvP related to marine robotics.

•	 The Oxford MOOS documentation.
http://www.moos-ivp.org/oxdocs.html

•	 The moos-ivp.org website documentation.
http://www.moos-ivp.org

1.4 The MOOS Architecture

The main idea explored today is that MOOS is a publish-subscribe architecture. A single MOOSDB
serves multiple MOOS applications by essentially handling the mail published and subscribed for
by each. A MOOS community is a collection of applications connected to a single MOOSDB.

Figure 2: The MOOS Architecture: MOOS is a publish-subscribe architecture. The MOOSDB servers a number
of clients, handling mail for each client as new information is posted.

For typical autonomous vehicle implementations, there is a MOOS community on board each
vehicle. When simulating multiple vehicle on a single machine, there is also a single community
associated with each vehicle. The communications discussed in today’s lab concern how a single
app communicates with another app via the publish-subscribe architecture. Later labs will address
how vehicles communicate with each other, essentially bridging two or more MOOS communities
with one another.

For today, the focus is on the MOOSDB and connected applications. The MOOSDB, unlike
an actual database, does not contain a full history of information that has passed through it. At
most, it stores the latest value for any given MOOS variable published to the MOOSDB. When a
new app connects to the MOOSDB it must register for the mail it needs. On startup, an app can
expect to get a mail message containing the latest value for any variable it registers for, even if that

6

http://www.moos-ivp.org/oxdocs.html
http://www.moos-ivp.org

mail reflects a posting to the MOOSDB long ago. Anything happening prior to that is unknown
to the newly connected app.

7

2 Launching the MOOSDB

In this exercise we will focus on the module that is at the heart of MOOS, the MOOSDB. The
MOOSDB application is a server that runs on the robot or unmanned vehicle platform’s computer,
or simply on your laptop during simulation. It may be launched from the command line, assuming
it is in your path as decribed in Section 1.1. In this exercise we will proceed by following the
example at:

Your goals in this part are:

1. Open a terminal window and launch the MOOSDB as shown on the webpage. Confirm that
you do see the same/similar output.

2. Open a browser and enter the URL shown at the bottom of the MOOSDB output. It should
be something like:

serving webpages HTTP on http://fred.csail.mit.edu:9080

The browwser should show three MOOS variables. DB UPTIME reflects the number of seconds
since the MOOSDB was launched. The DB TIME variable reflects the Unix time, i.e., the
number of seconds since midnight January 1, 1970. The DB CLIENTS time shows the list
of clients connected to the MOOSDB. Click on the refresh button to show how the values
change.

3. Create a mission file, moosdb alpha.moos with the three lines

ServerHost = localhost
ServerPort = 9000
Community = alpha

Re-launch the MOOSDB from the command-line, passing the newly created file above as an
argument. Note the difference in output produced by the MOOSDB.

Please see "Launching the DB" in the MOOS Basics section.

8

3 Scoping the MOOSDB

A MOOS scope is a tool for examining the state of the MOOSDB. Recall that the MOOSDB does
not keep a history of prior variable values, but rather just the most recent value posted for any
given variable. This means that the state of the MOOSDB may be regarded as the set of current
MOOS variables, their values, and who made the last posting to the variable and when.

In this exercise we will proceed by following the example at:

3.1 Scoping with uXMS

The uXMS tool is one of two scopes we’ll introduct in this section.

Your goals in this part are:

1. Open a terminal window and launch the MOOSDB as done at the end of the previous exercise:

% MOOSDB moosdb_alpha.moos

2. Open a second terminal window and launch uXMS, passing it the same mission file as an
argument, and two other command-line switches:

% uXMS moosdb_alpha.moos --all

Your second terminal window should look like the output on the webpage. Notice the number
in parentheses on the second line is incrementing. This indicates that the report has been
refreshed to your terminal. If you launched as above, the scope should come up in a mode that
refreshes the report any time a scoped variable changes values. In this case, the MOOSDB is
updating DB TIME and DB UPTIME about once per second.

By default, UXMS only scopes on the variables named on the command line. In the above case,
the --all option was used to tell uXMS to scope on all variables known to the MOOSDB.

Try a few other things:

•	 Hit the ’h’ key to see some keyboard interaction options that are available anytime the
scope is running. Hit ’e’ any time to return to the previous mode.

•	 Hit the space-bar to pause the stream of reports. This is useful if numbers are changing
rapidly and you just need to take a close look at something. Return to the previous
mode by hitting ’e’.

•	 Hit the ’S’ (upper-case) key to expand the (S)ource column. This column tells you
which app made the last posting. Collapse this column by hitting the ’s’ (lower-case)
key. Try the same for the (T)ime and (C)ommunity columns.

Please see "Scoping the DB" in the MOOS Basics section.

9

3. The whole purpose of a scope is to give you the key information you’re looking for, without
needing to sift through a lot of unwanted information, with as little effort as possible. In this
step we’ll pretend to be interested in focusing our attention on the DB UPTIME variable. Try
launching uXMS with an additional command line argument:

% uXMS moosdb_alpha.moos --all --colormap=DB_UPTIME,blue

This may seem unnecessary when there are only three variables, but in real applications there
may be hundreds of variables. In fact, the variable you’re looking for may have scrolled of
the window! So a similar way to accomplish the above is to only scope on the one variable
we’re looking for:

% uXMS moosdb_alpha.moos DB_UPTIME

4.	 uXMS only shows you the current snapshot of the variables in the MOOSDB. What if you would
like to see how a variable is changing? In our case, we know how the DB UPTIME variable is
changing, but for the sake of showing this feature, try:

% uXMS moosdb_alpha.moos --history=DB_UPTIME

3.2 Scoping with uMS

The uMS scope is a graphical MOOS scope, often preferred by those inclined to like GUIs vs.
command line tools. It has some other advantages over uXMS as well.

Your goals in this part are:

1. If you don’t still have a MOOSDB running, open a terminal window and launch the MOOSDB
as done previously:

% MOOSDB moosdb_alpha.moos

2. Open a second terminal window and launch uMS, passing it the same mission file as an argu
ment:

% uMS moosdb_alpha.moos

You should see a window open and, after clicking on the Connect button, you should see
something similar to:

10

Figure 3: The uMS MOOS Scope

Pros/Cons of uXMS vs uMS

The choice of uXMS vs uMS is often just a matter of taste. A couple of differences are noteworthy
however.

•	 uMS allows for connections to multiple MOOSDBs, on perhaps multiple vehicles, simultane
ously. The user may select the vehicle with the tab at the top of the screen.

•	 uXMS allows the user to scope on as few as one single variable, or to name the variable scope
list explicitly. uMS scopes on all variables all the time, with a few mechanisms for reducing
the scope list based on process name.

•	 uXMS may be a better choice if one is scoping on a remote MOOSDB, perhaps on a robot
with a poor connection. It is a low-bandwidth client compared to uMS. If running on a remote
terminal, its bandwidth back to the user is zero in the paused mode.

•	 uXMS has provisions for at least limited scoping on a variable history.
•	 uXMS will display a variable’s “auxilliary source” information. This is a secondary field

associated with each posting describing the source of the posting. This is key when using
the IvPHelm. Variables posted by helm behaviors will have a source of pHelmIvP and an
auxilliary source showing the behavior responsible for the posting.

11

4 Poking the MOOSDB

Poking refers to the idea of publishing a variable-value pair to the MOOSDB. Many apps publish
to the MOOSDB during the course of normal operation. Poking implies a publication that perhaps
was not planned, or outside the normal mode of business. It is often very useful for debugging.
Here we describe the uPokeDB tool.

In this exercise we will proceed by following the example at:

Your goals in this part are:

1. If you don’t still have the MOOSDB and uXMS running, open two terminal windows and
launch the MOOSDB and uXMS as done previously:

% MOOSDB moosdb_alpha.moos

% uXMS moosdb_alpha.moos --all

Now open a third terminal window for poking the MOOSDB as shown on the webpage as
follows:

% uPokeDB DEPLOY=true RETURN_SPEED=2 STRING_SPEED:=2.3 moosdb_alpha.moos

This pokes three variables, DEPLOY of type string, RETURN SPEED of type double, and STRING SPEED
of type string (note the ":="). Verify that this is the case by examining your uXMS window.
Note that in VarValue column there double-quotes around the value "2.3".

2. Trying poking the MOOSDB a second time, this time with:

% uPokeDB DEPLOY=100 moosdb_alpha.moos

Does the value of DEPLOY change? If not, why not?

3. Create a simple script of pokes on the command line as follows:

% uPokeDB APPLES=1 moosdb_alpha.moos; sleep 5; uPokeDB APPLES=2 moosdb_alpha.moos;

Watch it play out in the terminal window running uXMS. Try creating a similar, longer script
by creating a file myscript

Please see "Poking the DB" in the MOOS Basics section.

12

uPokeDB APPLES=1 moosdb_alpha.moos;
sleep 2
uPokeDB APPLES=2 moosdb_alpha.moos
sleep 2
uPokeDB APPLES=3 moosdb_alpha.moos
sleep 2
uPokeDB APPLES=4 moosdb_alpha.moos
sleep 2
uPokeDB APPLES=5 moosdb_alpha.moos
sleep 2
uPokeDB APPLES=6 moosdb_alpha.moos

Launch the script by typing "source myscript" on the command line. Watch the script play
out again in the uXMS window.

Scripting is often useful. In Section 6 we’ll see a more robust method for scripted pokes to
the MOOSDB.

13

5 Launching MOOS Missions with pAntler

In theory, a set of N applications may be launched from N terminal windows, but this is cumbersome
in practice. The pAntler tool allows a block to be declared in a mission file (.moos file) listing all
the apps to be launched in one go.

In this exercise we will proceed by following the example at:

Your goals in this part are:

1. Create a copy of the example mission file shown on the webpage and in Listing 1 below and
save it locally as db and uxms.moos. (hint: the easiest way to do this is to just invoke the wget
expression on the top line of this file. This will pull the file down from the server into your
current directory.)

You should see a single uXMS window pop up upon launch.

2. Modify the uXMS configuration block in the .moos file to configure uXMS to keep a history
of the DB UPTIME variable. To see configuration options for uXMS, type:

% uXMS --example

Once you have launched uXMS with the new configuration, type ’z’ to toggle in and out of
history mode.

3. Modify the	 db and uxms.moos file to launch a new terminal window for the MOOSDB in
addition the uXMS application.

Please see "Launching with pAntler" in the MOOS Basics section.

14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

0

Example Code 1.

// (wget http://oceanai.mit.edu/2.S998/examples/db_and_uxms.moos)
ServerHost = localhost
ServerPort = 9000
Community = alpha

ProcessConfig = ANTLER
{
MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = false
Run = uXMS @ NewConsole = true

}

ProcessConfig = uXMS
{
AppTick = 4
CommsTick = 4

VAR = DB_CLIENTS, DB_UPTIME, DB_TIME
DISPLAY_SOURCE = true
DISPLAY_TIME = true
COLOR_MAP = DB_CLIENTS, red

}

15

6 Scripted Pokes to the MOOSDB

This exercise covers how to have a script of pre-arranged pokes to the MOOSDB. This may be useful
for a number of reasons besides debugging. The primary tool described here is the uTimerScript
MOOS application. It is capable of (a) scripted pokes at a pre-defined times after launch, (b) pokes
times specified to fall randomly within an specified interval, (c) pokes having numerical values
falling with a uniformly random interval, and several other features including conditioning the
running of the script based on other MOOS variables.

In this exercise we will proceed by following the example at:

Your

1. Create a copy of the example mission file shown on the webpage and in Listing 2 below and
save it locally as utscript.moos. (hint: use wget!)

2. Launch the mission.	 It should open a uXMS window. Follow the progress of the counter
script.

% pAntler utscript.moos

3. Take a look at the uTimerScript documentation linked from the web page.	 In particular,
section 10.3.1. Configure the script such that is paused when uTimerScript is launched.
Launch the same mission and confirm that the script is initially not running. Then use
uPokeDB to un-pause the script, and confirm it is running.

4. This is a bit of a pAntler exercise. Configure your mission to launch two versions of the script,
the second version publishing to COUNTER B. Note you will need two configuration blocks, each
with a unique name. Hint: see the pXRelay example on the web page, or in the next section.

5. Confirm your new mission launches and executes the two separate scripts and both counters
are incrementing.

6. Configure the second script with a CONDITION parameter. See Section 10.3.2 of the uTimer-
Script documentation. Use a condition such as "CONDITION = COUNTER A > 5". Re-launch your
mission. Confirm that the second script is paused periodically based on the state of the first
script.

7. Add the pLogger application to your mission. You will need to add a pLogger entry to your
ANTLER configuration block, and add the following pLogger configuration block at the end
of your file.

ProcessConfig = pLogger
{
AsyncLog = true
WildCardLogging = true
WildCardOmitPattern = *_STATUS

}

Please see "MOOS Scripting" in the MOOS Basics section.

goals in this part are:

16

Re-run the mission. Confirm that you see the pLogger application listed in the DB CLIENTS
variable in the uXMS scope.

8. Verify that a log file has been created.	 Since we didn’t specify a name for the log file, by
default it should be in a subdirectory of where you launched the mission, looking something
like MOOSLog 12 2 2012 12 38 03. Enter the directory and confirm that you see a .alog file.

9. Take a look a the file by typing	 more filename.alog. Then take a look at the COUNTER
variables using aloggrep:

% aloggrep COUNTER_A MOOSLog_12_2_2012_____12_38_03.alog

Example Code 2.

0 // (wget http://oceanai.mit.edu/2.S998/examples/utscript.moos)
1 ServerHost = localhost
2 ServerPort = 9000
3 Community = alpha
4
5 ProcessConfig = ANTLER
6 {
7 MSBetweenLaunches = 200
8
9 Run = MOOSDB @ NewConsole = false
10 Run = uXMS @ NewConsole = true
11 Run = uTimerScript @ NewConsole = false
12 }
13
14 ProcessConfig = uXMS
15 {
16 VAR = COUNTER_A, DB_CLIENTS, DB_UPTIME
17 COLOR_MAP = COUNTER_A, red
18 HISTORY_VAR = COUNTER_A
19 }
20
21 ProcessConfig = uTimerScript
22 {
23 paused = false
24
25 event = var=COUNTER_A, val=1, time=0.5
26 event = var=COUNTER_A, val=2, time=1.0
27 event = var=COUNTER_A, val=3, time=1.5
28 event = var=COUNTER_A, val=4, time=2.0
29 event = var=COUNTER_A, val=5, time=2.5
30 event = var=COUNTER_A, val=6, time=3.0
31 event = var=COUNTER_A, val=7, time=3.5
32 event = var=COUNTER_A, val=8, time=4.0
33 event = var=COUNTER_A, val=9, time=4.5
34 event = var=COUNTER_A, val=10, time=5:10
35
36 reset_max = nolimit
37 reset_time = all-posted
38 }

17

7 A Simple Example with pXRelay

pXRelay is a simple MOOS app designed solely to illustrate basic functions of a MOOS app. It
registers for a single variable, and upon receipt mail for that variable, it publishes another variable
incremented by 1. It provides a framework for illustrating few other introductory topics.

In this exercise we will proceed by following the example at:

Your goals in this part are:

1. Create a copy of the example mission file shown on the webpage and in Listing 3 below and
save it locally as pxrelay.moos. (hint: use wget!)

2. Launch the mission.	 Open up uXMS in another Terminal window with the parameters of
your choosing. I recommend

% uXMS pxrelay.moos --colorany=APPLES,PEARS --all

3. As described on the web page, kick off the activity by poking one of the APPLES or PEARS
variables with an initial value. Confirm that things are working as they should. Perhaps see
the pXRelay pdf linked on the webpage for a more detailed description of how things should
look.

4. Add uTimerScript to your mission file, with a simple script to kick off the pXRelay handshak
ing at some point after launch (say 10 secs), as an alternative way to kicking off the active
instead of uPokeDB. You’ll need to add uTimerScript to your ANTLER configuration block,
and add a simple script (a uTimerScript configuration block) to your .moos file.

5. Change your uTimerScript script to be the ascending counter script from Section 6, incre
menting COUNTER A 1 to 10. Add a condition to your script (APPLES == $(PEARS)). Re-launch
the revised mission. Since APPLES=PEARS periodically, the condition will periodically be met.

6. Try changing the AppTick in the pXRelay configurations to perhaps allow more time in the
APPLES == $(PEARS) state.

Please see "Example with pXRelay" in the MOOS Basics section.

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Example Code 3.

0 // (wget http://oceanai.mit.edu/2.S998/examples/xrelay.moos)
ServerHost = localhost
ServerPort = 9000
Community = alpha

ProcessConfig = ANTLER
{
MSBetweenLaunches = 200

Run = MOOSDB @ NewConsole = false
Run = pXRelay @ NewConsole = false ~pXRelay_PEARS
Run = pXRelay @ NewConsole = false ~pXRelay_APPLES

}

ProcessConfig = pXRelay_APPLES
{
AppTick = 10
CommsTick = 10
INCOMING_VAR = APPLES
OUTGOING_VAR = PEARS

}

ProcessConfig = pXRelay_PEARS
{
AppTick = 10
CommsTick = 10
INCOMING_VAR = PEARS
OUTGOING_VAR = APPLES

}

19

8 If Time Permits...

If you have time remaining in this lab, here are some suggestions:

1. Take a look at the pXRelay source code (we will be in the next lab).	 It can be found at
moos-ivp/ivp/src/pXRelay/. Look inside PXR MOOSApp.cpp. Check out the OnNewMail()
and Iterate() loops.

2. Can you hack this code to make its increments by ten instead of one?

3. Can you hack this code such that it takes two incoming variables, and does its thing if either
of the two variables is written to?

20

MIT OpenCourseWare
http://ocw.mit.edu

2.S998 Marine Autonomy, Sensing and Communications
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

