Thermal Radiaton: Planck's Law

Basic Relations

Frequency vAngular Frequency $\omega = 2\pi v$ Wavelength λ Wavevector magnitude $k = 2\pi/\lambda$ Wavevector $\mathbf{k} = (k_x, k_y, k_z)$

$$c = v\lambda$$
 $\implies \omega = ck = c\sqrt{k_x^2 + k_y^2 + k_z^2}$

 $\omega(k)$: Dispersion relation (linear)

How much energy in the cavity?

$$U = 2\sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} \hbar \omega f(\omega, T) =$$

$$2\int_{0}^{\infty} \frac{dk_x}{(2\pi/2L_x)} \int_{0}^{\infty} \frac{dk_y}{(2\pi/2L_y)} \int_{0}^{\infty} \frac{dk_z}{(2\pi/2L_z)} \hbar \omega f(\omega, T)$$

$$= 2\int_{-\infty}^{\infty} \frac{dk_x}{(2\pi/L_x)} \int_{-\infty}^{\infty} \frac{dk_y}{(2\pi/L_y)} \int_{-\infty}^{\infty} \frac{dk_z}{(2\pi/L_z)} \hbar \omega f(\omega, T)$$

Thermal Radiaton: Planck's Law

$$U = \frac{2V}{8\pi^3} \int_{-\infty-\infty-\infty}^{\infty} \int d\omega f(\omega, T) dk_x dk_y dk_z$$
$$= \frac{2V}{8\pi^3} \int_{0}^{\infty} \hbar \omega f(\omega, T) 4\pi k^2 dk$$
$$= \frac{2V}{8\pi^3} \int_{0}^{\infty} \hbar \omega f(\omega, T) 4\pi \left(\frac{\omega}{c}\right)^2 d\left(\frac{\omega}{c}\right)$$
$$\frac{U}{V} = \int_{0}^{\infty} \hbar \omega f(\omega, T) \frac{\omega^2}{\pi^2 c^3} d\omega$$
$$= \int_{0}^{\infty} \hbar \omega f(\omega, T) D(\omega) d\omega$$
$$= \int_{0}^{\infty} u(\omega) d\omega$$

 $D(\omega)$ -density of states per unit volume per unit angular frequency interval

Nanoengineering Group

Energy density per ω interval

$$u(\omega) = \hbar \omega f(\omega, T) D(\omega)$$

 $=\frac{\hbar\omega^{3}}{\pi^{2}c^{3}}\frac{1}{\exp\left(\frac{\hbar\omega}{k_{B}T}\right)-1}$ Planck's law

Intensity: energy flux per unit solid angle

$$\int dA_{p} I(\omega) = \frac{C}{2}$$

$$\frac{du(\omega)}{4\pi} = \frac{\hbar\omega^3}{4\pi^3 c^2} \frac{1}{\exp\left(\frac{\hbar\omega}{k}\right)}$$

Solid Angle

whole space

Per unit wavelength interval

$$d\Omega = \frac{dA_p}{R^2}$$

4π

 $I(\lambda) = \left| \frac{I(\omega)d\omega}{d\lambda} \right| = \frac{4\pi c\hbar}{\lambda^5} \frac{1}{\exp\left(\frac{2\pi\hbar c}{k_B T\lambda}\right) - 1}$

Planck's law

Introduction to Thermoelectricity

Gang Chen

Mechanical Engineering Department Massachusetts Institute of Technology

URL: http://web.mit.edu/nanoengineering

Nanoengineering Group -WAR

http://www.sil.si.edu/silpublications/dibner-library-lectures/scientific-discoveries/text-lecture.htm

Nanoengineering Group

Jean Charles Athanase Peltier 1785-1845

Peltier Effect: Discovered in 1834 An electrical current creates a cooling or heating effect at the junction depending on the direction of current flow.

Nanoengineering Group

Thomson Effect

Thomson effect predicted, 1855

William Thomson (Lord Kelvin) 1824 – 1907

http://www.sil.si.edu/silpublications/dibner-library-lectures/scientific-discoveries/text-lecture.htm

Nanoengineering Group

Peltier Effect

Q (**Peltier**) = $(\Pi_1 - \Pi_2)$ **J**

Heating and cooling at junctions Reversible with current direction

Nanoengineering Group -WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

- Charge diffusion under a temperature gradient
- Built-in potential resisting diffusion

$$S = -\Delta V / \Delta T = -(V_{hot} - V_{cold}) / (T_{hot} - T_{cold})$$

S --- Seebeck Coefficient

Nanoengineering Group

Nanoengineering Group

Properties are Temperature Dependent

Images removed due to copyright restrictions. Please see Fig. 2a,b in Poudel, Bed, et al. "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys." *Science* 320 (May 2, 2008): 634-638.

Nanoengineering Group

Thermoelectric Devices

COLD SIDE

HOT SIDE

Nanoengineering Group

Performance of Thermoelectric Devices

Nanoengineering Group

Device Analysis: Cooling

- Ideal Devices
 - No Joule Heating, No Heat Conduction

 $\mathbf{Q}_{\mathbf{c}} = (\boldsymbol{\Pi}_{\mathbf{p}} \textbf{-} \boldsymbol{\Pi}_{\mathbf{n}}) \textbf{\bullet} \mathbf{I}$

• Real Devices:

Joule Heating & Heat Conduction

$$\mathbf{Q}_{c} = (\Pi_{p} - \Pi_{n}) \cdot \mathbf{I} - \mathbf{I}^{2} \mathbf{R}/2 - \mathbf{K} (\mathbf{T}_{h} - \mathbf{T}_{c})$$

Electrical Resistance Thermal Conductance

$$R = \frac{L_p \rho_p}{A_p} + \frac{L_n \rho_n}{A_n}$$

$$K = \frac{k_p A_p}{L_p} + \frac{k_n A_n}{L_n}$$

Nanoengineering Group

Optimize Current:

Nanoengineering Group

Figure of Merit Z

$$KR = \left(\frac{L_p \rho_p}{A_p} + \frac{L_n \rho_n}{A_n}\right) \left(\frac{k_p A_p}{L_p} + \frac{k_n A_n}{L_n}\right)$$

 $(KR)_{min} = (\sqrt{k_p \rho_p} + \sqrt{k_n \rho_n})^2$ when $\frac{L_n A_p}{L_n A_n}$

$$\frac{L_n A_p}{L_p A_n} = \left(\frac{\rho_p k_n}{\rho_n k_p}\right)^{1/2}$$

 $Z_{\max} = \frac{\left(\frac{S_p - S_n}{k_p}\right)^2}{\left(\sqrt{k_p \rho_p} + \sqrt{k_n \rho_n}\right)^2}$ For a single material: $Z = \frac{S^2}{\rho k} = \frac{\sigma S^2}{k_p}$

In a device, pn pairs are used:

- (1) Areas of each type of legs need to be optimized
- (2) Two types of legs should have comparable properties
- (3) Current input to the device needs to be optimized

Nanoengineering Group -WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Typical Number

• Bi_2Te_3 -based materials ~300 K

Device Leg: 1 mm x 1 mm x 2 mm

Temperature Dependence of Properties

Images removed due to copyright restrictions. Please see Fig. 2a,b,d,e in Poudel, Bed, et al. "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys." *Science* 320 (May 2, 2008): 634-638.

Nanoengineering Group

Thermoelectric Power Generation

Efficiency

$$\eta = \left(1 - \frac{T_c}{T_h}\right) \frac{\sqrt{1 + ZT_{ave}} - 1}{\sqrt{1 + ZT_{ave}}} + \frac{T_c}{T_h}$$
$$T + T_t$$

$$T_{ave} = \frac{1_c + 1_h}{2}$$

Constant Properties

Nanoengineering Group

Thermoelectric Refrigeration Coefficient of Performance $COP = \frac{T_c}{T_h - T_c} \frac{\sqrt{1 + ZT_{ave}} - T_h / T_c}{\sqrt{1 + ZT_{ave}} + 1}$ **CARNOT CYCLE** STIRLING REFRIGERATORS HOUSEHOLD **REFRIGERATORS & AIR-CONDITIONERS** THERMOELECTRIC **REFRIGERATORS** O STIRLING 24⁷¹⁰ **Ç**RYOCOOLERS 0.5 1.2 .8 2.0 1.4 1.6 TEMPERATURE RATIO (T /T _____)

Nanoengineering Group

Current and Potential Applications

Nanoengineering Group

Commercial Thermoelectric Devices

Images removed due to copyright restrictions. Please see http://www.hi-z.com/index.php http://www.marlow.com/thermoelectric-modules/

Power Generators from Hi-Z

Coolers from Marlow Industries

Nanoengineering Group

Current Applications in Refrigeration

Images removed due to copyright restrictions. Please see: http://www.roadtrucker.com/12-volt-coolers-accessories/ 12-volt-coolers-products/igloo-40-quart-kool-mate-40-12-volt-thermo-electric-cooler-6402.jpg http://image.made-in-china.com/2f0j00kvZEKWVPgtlu/Refrigerator-BC-65A-.jpg http://www.newdavincis.com/images/wc-1682%2016%20bottles.jpg http://www.rmtltd.ru/datasheets/TO812.4MD04116xx.pdf http://www.medsystechnology.com/images/gem4000_w32a.jpg http://amerigon.com/ccs_works.php

Current Applications in Power Generation

Images removed due to copyright restrictions. Please see: http://thermoelectrics.caltech.edu/images/mhw-rtg.gif http://globalte.com/pdf/teg_5120_spec.pdf http://www.roachman.com/thermic/thermic1.jpg http://www.research.philips.com/newscenter/pictures/downloads/misc-sustainability_05-0_h.jpg

Nanoengineering Group

System Consideration

Sometimes, thermal systems more expansive Nancengineering Group –WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT

Prototypes

Images removed due to copyright restrictions. Please see http://cdn-www.greencar.com/images/waste-exhaust-heat-generates-electricity-cars-efficient.php/bmw-teg-1.jpg http://cache.gawkerassets.com/assets/images/12/2009/03/BMW_TEG.jpg

http://cache.gawker.com/

Nanoengineering Group

MIT OpenCourseWare http://ocw.mit.edu

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.