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1 Introduction 

In stochastic scheduling, we want to allocate a limited amount of resources to a 
set of jobs that need to be serviced. Unlike in deterministic scheduling, however, 
the parameters of the system may be stochastic. For example, the time it takes 
to process a job may be subject to random fluctuations. Stochastic schedul
ing problems occur in a variety of practical situations, such as manufacturing, 
construction, and compiler optimization. 

As in deterministic scheduling, the set of stochastic scheduling problems is 
incredibly large and diverse. One important class of models involves scheduling 
a fixed number of jobs on a fixed number of identical parallel machines while 
minimizing a given performance measure. The processing times of the jobs are 
assumed to follow some joint probability distribution. In addition, there may 
be precedence constraints, or interdependencies between the jobs that require 
certain jobs not be scheduled until others are completed. The deterministic 
counterpart to this class of problems has been studied extensively [KSW98]. 
A näıve approach to these problems would be to take the expected processing 
times and use the algorithms for the deterministic problems. Unfortunately, 
it is easy to construct examples that shows that this approach can produce 
solutions that are arbitrarily bad. Fortunately, however, this class of stochastic 
scheduling problems can be easily cast as a Markov decision process (MDP) and 
therefore can be attacked by dynamic programming methods. 

Results for this class of stochastic scheduling problems are somewhat scat
tered, and have been obtained using a variety of methods. Rothkopf [R66] 
showed that for one machine without precedence constraints, an index rule 
minimizes the expected sum of weighted completion times for arbitrary process
ing time probability distributions. Möhring, Radermacher and Weiss [MRW84, 
MRW85] study the analytic properties of various classes of scheduling poli
cies, and determine optimal policies for special cases. Möhring, Schulz, and 
Uetz [MSU99] developed approximation algorithms for a variety of stochastic 
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scheduling problems using techniques from combinatorial optimization. Bert
sekas and Castañon [BC99] focus on a different class of stochastic scheduling 
problems, the quiz problem and its variations. They show how rollout algo
rithms can be implemented efficiently, and present experimental evidence that 
the performance of rollout policies is near-optimal. 

For this project, we consider a problem with one machine and an arbitrary 
normalized regular and additive objective function. We recast our finite-horizon 
decision problem into a stochastic shortest path problem. We show that for a 
relaxed formulation of our problem, the error of the solution obtained by the ap
proximate linear programming approach to dynamic programming as presented 
in de Farias and Van Roy [dV03] is uniformly bounded over the number of jobs 
that need to be scheduled, provided that the expected job processing times are 
finite. Finally, we argue using results from dynamic programming that the ap
proximate solution for the relaxed formulation of our problem is also not that 
far away from the optimal solution of the original problem. 

2 The problem 

Consider the following problem. We have a set of jobs N = {1, . . . , n} to 
be processed on one machine. The machine can only process one job at a 
time. The processing time of job i follows a discrete probability distribution 
pi, and the distributions p1, . . . , pn are assumed to be pairwise stochastically 
independent. The jobs have to be scheduled nonpreemptively, that is, once a job 
has started, it must be processed continuously until it is finished. The schedule 
must also respect any precedence constraints, or interdependencies between jobs 
that require certain jobs not be scheduled before others are completed. We 
would like to minimize the expected value of the objective function 

n−1 

h (Ri) C(i+1) − C(i)γ C(1) , . . . , C(n) =
1 

n 
i=0 

where C(i) denotes the time of the ith job completion (C(0) = 0), Ri is the set 
of jobs remaining to be processed at the time of the ith job completion, and h 

is a set function such that h (∅) = 0. Such an objective function is said to be 
additive. The function h can be interpreted as the holding cost per unit time 
on the set of uncompleted jobs. We also assume that γ is nondecreasing in the 
job completion times. 

Many common objective functions in scheduling are nondecreasing and ad
ditive. For example, h (S) = j∈S wj for all S ⊂ N generates the normalized 

sum of weighted completion times, 1 
j∈N wjCj . n 

2.1 Formulation as a finite horizon MDP 

We can formulate this problem as a finite horizon MDP with a finite state space 
S. For each state x ∈ S, there is a set of available actions Ax. Taking action 
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a ∈ Ax in state x, we transition to state y with probability Pa (x, y) and incur 
cost ga (x, y). 

Since we only have one machine, the state of the system x is sufficiently 
characterized by the set of jobs remaining to be processed Rx and the maximum 
completion time of the jobs completed so far, Cmax (x): 

x = (Cmax (x) , Rx) ∈ S. 

The size of the state space is exponential in the number of jobs. 
Since the objective function is nondecreasing in completion times, and since 

the jobs’ processing times are independent of their start times, any optimal 
policy need not leave the machine deliberately idle at any time. Therefore, an 
action in our problem is simply the next job to be processed: at every state x, 
the action set is Ax ⊂ Rx. If there are no precedence constraints, Ax = Rx. 
The time stage costs are 

1 
ga (x, y) = h (Rx) (Cmax (y) − Cmax (x)) . 

n 

The transition probabilities are 

pa (t) if Ry = Rx\ {a} and Cmax (y) = Cmax (x) + t 
Pa (x, y) = 

0 otherwise. 

The problem is then to solve for the following finite-horizon cost-to-go function 

∗ J (x, n) = 0 
⎧ ⎫ 
⎨ ⎬ 

∗ ∗ J (x, t) = min Pa (x, y) (ga (x, y) + J (y, t + 1)) , t = 0, 1, . . . , n − 1. 
a∈Ax ⎩ ⎭ 

y∈S 

2.2 Reformulation into a stochastic shortest path problem 

Since our state space is exponential in size, we cannot hope to solve our problem 
exactly using dynamic programming methods. All of the major methods for ap
proximate dynamic programming consider infinite-horizon discounted cost prob
lems. In order to use these methods for our finite-horizon stochastic scheduling 
problem, we recast our problem into a stochastic shortest path (SSP) prob
lem. We refer to the following formulation of our problem as the original SSP 
formulation. 

We introduce a terminating state x̄ with the following property: only the 
states that have no more remaining jobs (Rx = ∅) can reach x̄ in one step. 
Observe that for all states such that Rx = ∅ and at the terminating state x̄, the 
set of actions available Ax is empty, and therefore the transition probabilities 
and time stage costs involving x̄ are not affected by what action is taken. The 
transition probabilities involving x̄ are 

⎧ 
⎪1 ∀x such that Rx = ∅ 
⎨ 

Pa (x, ¯ ¯x) = 1 if x = x 
⎪ 
⎩

0 otherwise 
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and the time stage costs involving x̄ are 

0 ∀x such that Rx = ∅ 
ga (x, x̄) = 

¯0 if x = x. 

The cost-to-go function is therefore 
⎡ � ⎤ 

T (x) � 
∗	

� 
J (x) = min E ⎣ gu (xt, xt+1)� x0 = x⎦ . 

t=0 � u 

where T (x) is the time stage when the system reaches the terminating state. 
Recall that a stationary policy u is called a proper policy if, when using this 

policy, there is positive probability that the terminating state will be reached 
after a finite number of stages. Also recall that if all stationary policies are 
proper, then the cost-to-go function for the SSP problem is the unique solution 
to Bellman’s equation [B01]. Since any policy in our scheduling problem requires 
one additional job to be scheduled at each time stage, we must always reach the 
terminating state with probability 1, regardless of the policy used. Therefore, 
to solve our problem exactly, we can solve Bellman’s equation. 

3 Solution method and bounds 

We consider the linear programming approach to dynamic programming by de 
Farias and Van Roy [dV03] as a solution method to our problem. We briefly 
review the method and related results. 

3.1	 The linear programming approach to dynamic pro

gramming 

Define the operator 
TJ = min {gu + αPuJ} . 

u 

where the minimization is carried out component-wise. We want to determine 
J ∗,α , the unique solution to Bellman’s equation, TJ = J . The exact linear 
programming (ELP) approach to solving Bellman’s equation solves the following 
optimization problem for any c > 0: 

maximize c T J 

subject to TJ ≥ J. 

Note that this optimization problem can be recast as the following linear pro
gram: 

maximize c T J 

subject to ga (x) + α Pa (x, y)J (y) ≥ J (y) , ∀x ∈ S, a ∈ Ax. 

y∈S 
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The approximate linear programming (ALP) approach to dynamic programming 
reduces the number of variables in the exact linear programming by the use of 
basis functions. Given a set of basis functions φ1, . . . , φK , we define the matrix 

⎡ ⎤ 
| | 

Φ = ⎣ φ1 · · · φK ⎦ , 
| | 

and in the hopes of computing a vector ˜ r is a close approximation r such that Φ˜
to J ∗,α , we solve the following optimization problem: 

maximize c T Φr	 (1) 

subject to TΦr ≥ Φr. 

This problem can be recast as a linear program just as in the ELP approach. 
Given a solution r̃, we hopefully can obtain a good policy by using the greedy 
policy with respect to Φr̃, 

⎧ ⎫ 
⎨ ⎬ 

u (x) = arg min ga (x) + α Pa (x, y) (Φr̃) (y) . 
a∈Ax ⎩	 ⎭ 

y∈S 

de Farias and Van Roy [dV03] proved the following bound on the error of the 
ALP solution. 

Theorem 3.1. (de Farias and Van Roy 2003) Let r̃ be a solution of the ap
proximate LP (1), and α ∈ (0, 1). Then, for any v ∈ R

K such that (Φv) (x) > 0 
for all x ∈ S and αHΦv < Φv, 

2cT Φv 
�J ∗,α − Φr̃� ≤ min �J ∗,α − Φr�1,c 1 − βΦv r ∞,1/Φv 

where	
⎧ ⎫ 
⎨ ⎬ 

(HΦv) (x) = max Pa (x, y) (Φv) (y) 
a∈Ax ⎩	 ⎭ 

y∈S 

and 
α (HΦv) (x)

βΦv = max . 
x (Φv) (x) 

3.2 A uniform bound over number of jobs 

We relax our stochastic shortest path problem by introducing discount factors 
α ∈ (0, 1) at each time stage. We refer to this formulation as the α-relaxed SSP 
formulation. The cost-to-go function for this problem is 

⎡	 � ⎤ 
T (x) � 

J ∗,α (x) = min E ⎣ αt gu (xt, xt+1)�
� 
x0 = x⎦ . 

t=0 � u 

For this relaxation, we show that the error of the approximate linear program
ming solution is uniformly bounded over the number of jobs to be scheduled. 
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Theorem 3.2. Assume that the holding cost h (S) is bounded above by M for 
all subsets S of N . Let r̃ be the ALP solution to the α-relaxed SSP formulation 
of the stochastic scheduling problem. For α ∈ (0, 1), 

�J ∗,α − Φ˜
2M maxi∈N E [pi] 

r� ≤ .1,c 1 − α 

Proof. Due to the nature of our problem, we know that for any state x, T (x) = 
|Rx|+1. However, since ga (x, ¯ x, ¯x) = 0 for all x such that Rx = ∅, and ga (¯ x) = 
0, when computing the cost-to-go function at state x, we only need to consider 
time stage costs for time stages 0 through |Rx| − 1. Since the holding cost h is 
bounded by above by M for all subsets of N , for some policy u we have 

⎡ � ⎤ 
|Rx|−1 � 

J ∗,α (x) = min E ⎣ �

� 
x0 = x⎦
αt gu(xt) (xt, xt+1) 
� 

t=0 � 
⎡ � ⎤ 

u 

|Rx|−1 � 

≤ E ⎣ αt gu(xt) (xt, xt+1)�
� x0 = x⎦ 

t=0 � 
⎡ � ⎤ 

|Rx|−1 � 

≤ E ⎣ gu(xt) (xt, xt+1) 
� x0 = x⎦ 

t=0 � 
⎡ � ⎤ 

|Rx|−1 � 
� 1 � 

= E ⎣ h (Rxt 
) (Cmax (xt+1) − Cmax (xt)) � x0 = x, u ⎦ 

n 
t=0 � 

⎡ � ⎤ 
|Rx|−1 � 
� 1 � 

= E ⎣ h (Rxt 
) pu(xt)

� x0 = x⎦ 
n 

t=0 � 
⎡ ⎤ 

|Rx|−1 � 
� 1 � 

≤ E ⎣ Mpu(xt)
� x0 = x⎦ 

n 
t=0 �


M 
= E [pi] 

n 
i∈Rx 

where pu(xt) is the processing time of the job chosen at state xt. 
Consider the function 

k 
V (x) = E [pi] 

n 
i∈Rx 

for some constant k. Then for all x ∈ S 

α (HV ) (x) = α max Pa (x, y)V (y) 
a∈Ax 

y∈S 

= αk max 

⎛ ⎞ 
1 � 

Pa (x, y)⎝ E [pi]⎠ 
a∈Ax n 

y∈S i∈Ry 
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� kk 
= α E [pi] − E [pa ∗ ] 

n n 
i∈Rx 

αE [pa ∗ ] 
= V (x) α − � 

E [pi]i∈Rx 

< V (x) 

∗where a ∈ arg maxa∈Ax 
Pa (x, y)V (y). Therefore, V is a Lyapunov function, 

and there is a β < 1 independent of the number of jobs n such that αHV ≤ βV . 
Also note that 

min �J ∗,α − Φr� ≤ �J ∗,α�∞,1/V ∞,1/V r 

∗,α (x)|J | 
= max 

x∈S V (x) 
M 

�

≤ max n E 
�
� i∈Rx 

p
� 
i 

kx∈S 
n i∈Rx 

pi 

M 
= 

k 

This is uniformly bounded over the number of states. 
Finally, we consider cT V . Let c be some probability distribution such that 

c (x) > 0 for all x ∈ S. 

� � k � 
c (x) V (x) = c (x) E [pi] 

n 
x∈S x∈S i∈Rx 

� 1 � 
= k c (x) E [pi] 

n 
x∈S i∈Rx 

≤ k c (x) max E [pi] 
i∈N 

x∈S 

= k max E [pi] . 
i∈N 

This is uniformly bounded over the number of jobs, provided that the expected 
processing times of the jobs are bounded. Therefore, by Theorem 3.1, provided 
that E [pi] is one of our basis functions, we have that i∈Rx 

2cT Φv ∗�J ∗,α − Φr̃� ≤ min �Jα − Φr�∞,1/Φv1,c 1 − βΦv r 

2M maxi∈N E [pi]
≤ 

1 − α 

which is uniformly bounded over the number of jobs, n. 
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3.3 What happens when α = 1? 

Unfortunately, the bound in Theorem 3.2 explodes for α = 1, and therefore 
does not directly apply to the original SSP formulation. The problem lies in 
the choice of the Lyapunov function. If we use the same Lyapunov function as 
in the proof of Theorem 3.2, we are left with the following equality 

E [pa ∗ ]
(HV ) (x) = V (x) 1 − � . 

E [pi]i∈Rx 

As the number of jobs n → ∞, the ratio of the expected processing time of any 
one job to the sum of the expected processing times of all jobs goes to zero. 
Therefore, by using the methods from the proof of Theorem 3.2, we cannot find 
a β < 1 such that HV ≤ βV regardless of the number of jobs. 

However, since the ALP solution for the α-relaxed formulation is not that far 
away from the optimal solution to the α-relaxed formulation, we can show that 
the ALP solution obtained for the α-relaxed SSP formulation is also not that 
far away from the optimal solution of the original SSP formulation, depending 
on the value of α. First, we briefly present a well-known result from dynamic 
programming that relates the costs of the infinite-horizon discounted cost and 
average-cost problems. 

Lemma 3.1. For any stationary policy u and α ∈ (0, 1), we have 

Ju 
Jα,u = + hu + O (|1 − α|)

1 − α 

where 
∞ N−1 

Jα,u = αkPu
k gu, Ju = lim 

1 
P k gu, 

N→∞ N u 

k=0 k=0 

hu is a vector satisfying 
Ju + hu = gu + Puhu, 

and O (|1 − α|) is an α-dependent vector such that 

lim O (|1 − α|) = 0. 
α→1 

For the stochastic scheduling problem formulated as a stochastic shortest 
∗path problem, the Ju in Lemma 3.1 is equal to zero. Recall that J is the 

cost-to-go function for the original SSP formulation. Therefore, Lemma 3.1 
implies 

J ∗ − J ∗,α ≤ J − J ∗,α 

= −O (|1 − α|) 
∗ ⇒ |J − J ∗,α| ≤ −O (|1 − α|) 

where J is the cost of using the optimal greedy policy for the α-relaxed SSP 
formulation in the original SSP formulation (hu in Lemma 3.1). Since the cost-
to-go functions for the original and α-relaxed SSP formulations are not that far 
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apart when α is large, the ALP solution for the α-relaxed SSP formulation is 
not that far away from the optimal solution to the original SSP formulation 
when α is large. 

Corollary 3.1. Let r̃ be the optimal solution to the ALP for the α-relaxed SSP 
formulation. Then for α ∈ (0, 1), 

�J − Φ˜∗ r�1,c ≤ 
2M maxi∈N E [pi] 

− c T O (|1 − α|) . 
1 − α 

Proof. The result follows immediately from Theorem 3.2 and the arguments 
above: 

∗ r� ≤ �J ∗ − J ∗,α� + �J ∗,α − Φ˜�J − Φ˜ r�1,c 1,c 1,c 

≤ c T |J − J ∗,α| +
2H maxi∈N E [pi]∗ 

1 − α 

≤ 
2H maxi∈N E [pi] 

− c T O (|1 − α|)
1 − α 

Although we have had difficulty in obtaining an error bound uniform over 
the number of jobs for the ALP solution when α = 1, recent work [d04] indicates 
that relaxing the problem to include discount factors is the right approach to 
obtaining good bounds for the original SSP formulation. 

4 Conclusion 

We have shown that in theory, the approximate linear programming approach 
to dynamic programming should be a good solution method for the stochastic 
scheduling problem we studied. By relaxing the problem to include a discount
ing factor at each time stage, we obtained a bound on the error of the ALP 
solution that is uniform over the size of the problem. Using well-known results 
in dynamic programming, we also showed that by solving the relaxed problem, 
we obtain a solution that is not that far away from the optimal solution to the 
original problem. 

The analysis above also provides a error bound uniform over the number 
of jobs for the multiple machine case. Although the state and action spaces 
of the problem with multiple machines are very complex, an upper bound on 
the cost-to-go function at any state can always be obtained by considering the 
cost-to-go function on just one machine. 

One immediate avenue of further research would be to determine an error 
bound that is uniform over the number of jobs for the ALP solution to the 
original SSP formulation. Although our error bound does not grow as the size 
of the problem grows, the error bound is still potentially very large. It would 
be nice to see if a tighter bound on the errors can be obtained. Another direc
tion of investigation would be to run computational experiments on using ALP 
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for our stochastic scheduling problem. It would be nice to see how the ALP 
approach performs in practice, and whether or not in reality ALP solves the 
original SSP formulation (with α = 1) poorly as the size of the problem grows. 
Finally, the ALP method relies on solving a linear program with a constraint 
for every state-action pair, which in our problem would result in an extremely 
large optimization problem. One might investigate how the constraint sampling 
LP approach to dynamic programming [dV01] performs with the stochastic 
scheduling problem we studied, both theoretically and practically. 
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[MRW85] Möhring, R. H., F. J. Radermacher, G. Weiss (1985). Stochastic 
scheduling problems II: set strategies. Zeitschrift für Operations Re
search 29, pp. 65-104. 
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