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1 Approximate Linear Programming 

Recall that we approximate J� � �˜ r is the solution of r, where ˜

maxr cT �r 
(ALP) 

s.t. T�r ∀ �r 

In the previous lecture, we proved the following result on the approximation error yielded by the ALP: 

Theorem 1 If �v = e for some v, then we have 

⇒J� − �˜
2 

r⇒1,c ≈ min ⇒J� − �r⇒�.	 (1)
1 − ρ r 

Though the above bound offers some support for the linear programming approach, there are some significant 

weaknesses: 

1. The bound calls for an element of the span of the basis functions to exhibit uniformly low error over 

all states. In practice, however, minr ⇒J
� −�r⇒� is typically huge, especially for large-scale problems. 

2. The bound does not take into account the choice of state-relevance weights.	 As demonstrated in the 

previous section, these weights can significantly impact the approximation error. A sharp bound should 

take them into account. 

In this lecture, we present a line of analysis that generalizes Theorem 1 and addresses the aforementioned 

difficulties. 

2 Lyapunov Function 

To set the stage for the development of an improved bound, let us establish some notation. First, we 

introduce a weighted maximum norm, defined by 

⇒J⇒�,� = max �(x)|J(x)|,	 (2) 
x∗S 

for any � : S ≥� ∈+ . As opposed to the maximum norm employed in Theorem 1, this norm allows for uneven 

weighting of errors across the state space. 

We also introduce an operator H, defined by 


 
(HV )(x) = max Pa(x, y)V (y), 

a∗Ax 
y∗S 

for all V : S ≥� ∈. For any V , (HV )(x) represents the maximum expected value of V (Y ) if the current state 

is x and Y is a random variable representing the next state. 
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For each V : S ≥� ∈, we define a scalar �V given by 

ρ(HV )(x)
�V = max . (3) 

x V (x) 

We can now introduce the notion of a “Lyapunov function,” as follows. 

Definition 1 (Lyapunov function) We call V : S ≥� ∈+ a Lyapunov function if �V < 1. 

Our definition of a Lyapunov function translates into the condition that there exist V > 0 and � < 1 

such that 

ρ(HV )(x) ≈ �V (x), �x → S. (4) 

If ρ were equal to 1, this would look like a Lyapunov stability condition: the maximum expected value 

(HV )(x) at the next time step must be less than the current value V (x). In general, ρ is less than 1, and 

this introduces some slack in the condition. 

Our error bound for the approximate LP will grow proportionately with 1/(1 − �V ), and we therefore 

want �V to be small. Note that �V becomes smaller as the (HV )(x)’s become small relative to the V (x)’s; 

�V conveys a degree of “stability,” with smaller values representing stronger stability. Therefore our bound 

suggests that, the more stable the system is, the easier it may be for the approximate LP to generate a good 

scoring function. 

An interesting (and useful) fact about Lyapunov functions is that T is a contraction with respect to 

⇒ · ⇒�,1/V , when V is a Lyapunov function: 

¯Lemma 1 Let V be a Lyapunov function. Then, �J, J , we have 

¯ ¯J⇒ J⇒TJ − T ≈ �V ⇒J −⇒ 1 1 
V V 

Proof: Let J, J̄ be arbitrary. Let 

γ = ⇒J − J̄⇒�, 1 
V 

Then 
¯ ¯J − V γ ≈ J ≈ J + V γ 

¯Let ū be greedy with respect to J , and u be greedy with respect to J . Then 

T J̄ − TJ ūρP+ū J̄) − (gu + ρPuJ)= (g

¯≈ (gu + ρPuJ) − (gu + ρPuJ) 

¯= ρPu(J − J) 

¯≈ ρPu|J − J | 
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Therefore, �x → S, 

¯
¯


 |J (y) − J (y)|
(T J )(x) − (TJ )(x) = ρ Pu(x, y) V (y)

V (y)
y 

¯

� 

|J (y≥) − J (y≥)|
� 

≈ ρ Pu(y) max 
y� V (y≥) 

V (y) 
y 

β 

 

≈ γρ Pu(x, y)V (y) 
y 

≈ γρ(HV )(x) 

≈ γ�V (x) 

Hence, 

T J − T J̄ ≈ �V V γ 

and we have 
¯|(T J )(x) − (TJ )(x)| 

≈ γ�V
V (x) 

We are now ready to state our main result. For any given function V mapping S to positive reals, we 

use 1/V as shorthand for a function x ≥� 1/V (x). 

Theorem 2 Let r̃ be a solution of the approximate LP. Then, for any v → ∈K such that �v is a Lyapunov 

function, 
2cT �v 

⇒J � − �r̃⇒1,c ≈ min ⇒J � − �r⇒�,1/�v . (5)
1 − ��v r 

Proof: Let 

= arg min ⇒J � − �r⇒r 1 
Vr 

and 

γ = ⇒J � − �r ⇒ 1 
V 

. 

Let 

r̄ = r � − γ 
1 + �V 

V 
1 − �V 

Then 

T �r̄ − T �r ≈ �V ⇒�r̄ − �r⇒ ⇒ ⇒ 1 
V 

t 
V 

γ(1 + �V ) 
= �V ⇒�V ⇒�,1 − �V 

γ(1 + �V ) 
= �V 

1 
V 

(6)
1 − �V 

Moreover, 

J � − �r ≈ �V ⇒J � − �r = �V γ (7)⇒ ⇒ ⇒1 1 
V V 
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Thus, 

rT �¯ ∀ T �r � − γ�V 
1 + �V 

V from (6) 
1 − �V 

∀ J � − �V γV − �V γ 
1 + �V 

V from (7) 
1 − �V 

∀ �r � − (1 + �V )γV − �V γ 
1 + �V 

V 
1 − �V 

1 + �V 1 + �V 
r + γ V − (1 + �V )γV − �V V 

1 − �V	 1 − �V 

r 

Therefore, we have ¯	 r ∀ �¯r is feasible since T �¯ r. Note that 

1⇒J � − �r ⇒�, 
V 

= γ ≤ J � − γV ≈ �r � ≈ J � + γV. 

We have 

r⇒1,c ≈ ⇒J � − �¯ r is optimal and ¯⇒J � − �˜	 r⇒1,c (since ˜ r is feasible) 

= ⇒J � − �r + 
γ(1 + �V ) 

V ⇒1,c
1 − �V 

≈ ⇒J � − �r ⇒1,c + 
γ(1 + �V ) 

c T V 
1 − �V 

= c(x)|J �(x) − (�r )(x)| + 
γ(1 + �V ) 

c T V 
1 − �V x 

≈ 

 

c(x)V (x)γ + 
γ(1 + �V ) 

c T V 
1 − �V x 

= γ + 
γ(1 + �V ) 

c T V 

� 

c T V 
1 − �V 

2cT V 
= γ 

1 − �V 

Let us now discuss how this new theorem addresses the shortcomings of Theorem 1 listed in the previous 

section. We treat in turn the two items from the aforementioned list. 

1. The norm	 ⇒ · ⇒� appearing in Theorem 1 is undesirable largely because it does not scale well with 

problem size. In particular, for large problems, the optimal value function can take on huge values 

over some (possibly infrequently visited) regions of the state space, and so can approximation errors 

in such regions. 

Observe that the maximum norm of Theorem 1 has been replaced in Theorem 2 by ⇒ · ⇒�,1/�v . Hence, 

the error at each state is now weighted by the reciprocal of the Lyapunov function value. This should 

to some extent alleviate difficulties arising in large problems. In particular, the Lyapunov function 

should take on large values in undesirable regions of the state space — regions where J � is large. 

Hence, division by the Lyapunov function acts as a normalizing procedure that scales down errors in 

such regions. 
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2. As opposed to the bound of Theorem 1, the state-relevance weights do appear in our new bound. In 

particular, there is a coefficient cT �v scaling the right-hand-side. In general, if the state-relevance 

weights are chosen appropriately, we expect that cT �v will be reasonably small and independent of 

problem size. We defer to the next section further qualification of this statement and a discussion of 

approaches to choosing c in contexts posed by concrete examples. 

Multiclass Queueing Networks 
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Figure 1: A Multiclass Queueing System 

We now consider a queueing network with d queues and finite buffers of size B to determine the impact 

of dimensionality on the terms involved in the error bound of Theorem 2. 

We assume that the number of exogenous arrivals occuring in any time step has expected value less than 

or equal to Ad, for a finite A. The state x → ∈d indicates the number of jobs in each queue. The cost per 

stage incurred at state x is given by 

g(x) = 
|x| 
d 

= 
1 
d 

d 
 
xi, 

i=1 

the average number of jobs per queue. 

Let us first consider the optimal value function J � and its dependency on the number of state variables 

d. Our goal is to establish bounds on J � that will offer some guidance on the choice of a Lyapunov function 

V that keeps the error minr ⇒J � − �r⇒�,1/V small. Since J � ∀ 0, we will only derive upper bounds. 

Instead of carrying the buffer size B throughout calculations, we will consider the infinite buffer case. 

The optimal value function for the finite buffer case should be bounded above by that of the infinite buffer 

case, as having finite buffers corresponds to having jobs arriving at a full queue discarded at no additional 

cost. 

We have


Ex [|xt|] ≈ |x| + Adt,


since the expected total number of jobs at time t cannot exceed the total number of jobs at time 0 plus the 
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expected number of arrivals between 0 and t, which is less than or equal to Adt. Therefore we have 


 
Ex ρt|xt| = 


 
ρtEx [|xt|] 

t=0 t=0 


 
≈ ρt(|x| + Adt) 

t=0 

|x| Ad 
= + . (8)

1 − ρ (1 − ρ)2 

The first equality holds because |xt| ∀ 0 for all t; by the monotone convergence theorem, we can interchange 

the expectation and the summation. We conclude from (8) that the optimal value function in the infinite 

buffer case should be bounded above by a linear function of the state; in particular, 

0 ≈ J �(x) ≈ 
�1 

|x| + �0,
d 

for some positive scalars �0 and �1 independent of the number of queues d. 

As discussed before, the optimal value function in the infinite buffer case provides an upper bound for 

the optimal value function in the case of finite buffers of size B. Therefore, the optimal value function in 

the finite buffer case should be bounded above by the same linear function regardless of the buffer size B. 

As in the previous examples, we will establish bounds on the terms involved in the error bound of Theorem 

2. We consider a Lyapunov function V (x) = 1 
d |x| + C for some constant C > 0, which implies 

min ⇒J � − �r⇒�,1/V ≈ ⇒J � ⇒�,1/V
r 

�1|x| + d�0
≈ max 

x�0 |x| + dC 
�0

≈ �1 + ,
C 

and the bound above is independent of the number of queues in the system. 

Now let us study �V . We have 
� 
|x| + Ad 

� 

ρ(HV )(x) ≈ ρ + C 
d 

ρA 
≈ V (x) ρ + 

|x| + Cd 
� 

ρA 
� 

≈ V (x) ρ + ,
C 

and it is clear that, for C sufficiently large and independent of d, there is a � < 1 independent of d such that 

ρHV ≈ �V , and therefore 
1−

1 
�V 

is uniformly bounded on d. 

Finally, let us consider cT V . We expect that under some stability assumptions, the tail of the steady-state 
� �d 

1−�distribution will have an upper bound with geometric decay [1] and we take c(x) = 
1−�B+1 β|x|. The 

state-relevance weights c are equivalent to the conditional joint distribution of d independent and identically 
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distributed geometric random variables conditioned on the event that they are all less than B + 1. Therefore, 

d 
T V = E 

1 
Xi + C Xi < B + 1, i = 1, ..., d 


 
c 

d 
i=1 

< E [X1] + C 
β 

= + C, 
1 − β 

where Xi, i = 1, ..., d are identically distributed geometric random variables with parameter 1 − β. It follows 

that cT V is uniformly bounded over the number of queues. 
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