Lecture Note 14

1 Convergence of $T D(\lambda)$

In this lecture, we will continue to analyze the behavior of $T D(\lambda)$ for autonomous systems. We assume that the system has stage costs $g(x)$ and transition matrix P.

Recall that we want to approximate J^{*} by $J^{*} \approx \Phi \tilde{r}$. We find successive approximations $\Phi r_{0}, \Phi r_{1}, \ldots$ by applying $T D(\lambda)$:

$$
\begin{align*}
r_{k+1} & =r_{k}+\gamma_{k} d_{k} z_{k} \tag{1}\\
d_{k} & =g\left(x_{k}\right)+\alpha\left(\Phi r_{k}\right)\left(x_{k+1}\right)-\left(\Phi r_{k}\right)\left(x_{k}\right) \tag{2}\\
z_{k} & =\alpha \lambda z_{k-1}+\phi\left(x_{k}\right)=\sum_{\tau=0}^{k}(\alpha \lambda)^{\tau} \phi\left(x_{\tau}\right) \tag{3}
\end{align*}
$$

We make the following assumptions:
Assumption 1 The Markov chain characterized by P is irreducible and aperiodic with stationary distribution π.

Assumption 2 The basis functions are orthonormal with respect to $\|\cdot\|_{2, D}$, where $D=\operatorname{diag}(\pi)$, i.e., $\Phi^{T} D \Phi=I$.

In the previous lecture, we introduced and analyzed approximate value iteration (AVI). The main idea is that $T D(\lambda)$ may be interpreted as a stochastic approximations version of AVI. Before finishing the analysis of $T D(\lambda)$, we review the main points related to AVI.

Recall the operators T_{λ} and Π :

$$
\begin{aligned}
T_{\lambda} J & =(1-\lambda) \sum_{m=0}^{\infty} \lambda^{m} T^{m+1} J \\
\Pi J & =\Phi<\Phi, J>_{D}
\end{aligned}
$$

Then AVI is given by

$$
\begin{equation*}
\Phi r_{k+1}=\Pi T \Phi r_{k} \tag{4}
\end{equation*}
$$

and we have the following theorem characterizing its limiting behavior:

Theorem 1 If

$$
D=\left[\begin{array}{llll}
\pi_{1} & 0 & \ldots & 0 \\
0 & \pi_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \pi_{|\mathcal{S}|}
\end{array}\right]
$$

and $\pi^{T} P=\pi^{T}$, then $r_{k} \rightarrow r^{*}$, and

$$
\left\|J^{*}-\Phi r^{*}\right\|_{2, D} \leq \frac{1}{\sqrt{1-k^{2}}}\left\|J^{*}-\Pi J^{*}\right\|_{2, D}
$$

where $k=\frac{\alpha(1-\lambda)}{1-\alpha \lambda} \leq \alpha$.
We can think $T D(\lambda)$ as a stochastic approximations version of AVI. Recall that the main idea in stochastic approximation algorithms is as follows. We would like to solve a system of equations $r=H r$, but only have access to noisy observations $H r=w$ for any given r. Then we attempt to solve $r=H r$ iteratively by considering

$$
r_{k+1}=r_{k}+\gamma_{k}\left(H r_{k}-r_{k}+w_{k}\right) .
$$

Hence in order to show that $T D(\lambda)$ is a stochastic approximations version of AVI, we would like to show that

$$
\Phi r_{k+1}=\Pi T_{\lambda} \Phi r_{k}-\Phi r_{k}+w_{k}
$$

for some noise w_{k}.
The following lemma expresses (4) in a format that is more amenable to our analysis.
Lemma 1 The AVI equations (4) can be rewritten as

$$
\begin{equation*}
\Phi r_{k+1}=\Phi<\Phi, T_{\lambda} \Phi r_{k}>_{D} \tag{5}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
r_{k+1}=A r_{k}+b \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
A=(1-\lambda) \Phi^{T} D\left(\sum_{t=0}^{\infty} \lambda^{t}(\alpha P)^{t+1}\right) \Phi \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\Phi^{T} D \sum_{t=0}^{\infty}(\alpha \lambda)^{t} P^{t} g . \tag{8}
\end{equation*}
$$

Proof: (5) follows immediately from the definition of Π. Now note that

$$
\begin{aligned}
r_{k+1} & =<\Phi, T_{\lambda} \Phi r_{k}>_{D} \\
& =\Phi^{T} D T_{\lambda} \Phi r_{k} \\
& =(1-\lambda) \Phi^{T} D \sum_{m=0}^{\infty} \lambda^{m}\left[\sum_{t=0}^{m}(\alpha P)^{t} g+\alpha^{m+1} P^{m+1} \Phi r_{k}\right] \\
& =(1-\lambda) \Phi^{T} D \sum_{m=0}^{\infty} \lambda^{m}(\alpha P)^{m+1} \Phi r_{k}+(1-\lambda) \sum_{t=0}^{\infty}(\alpha P)^{t} g \sum_{m=t}^{\infty} \lambda^{m} \\
& =A r_{k}+\sum_{t=0}^{\infty}(\lambda \alpha P)^{t} g \\
& =A r_{k}+b .
\end{aligned}
$$

At the same time, we have the following

Lemma $2 T D(\lambda)$'s equations (1) can be rewritten as

$$
\begin{equation*}
r_{k+1}=r_{k}+\gamma_{k}\left(A_{k} r_{k}-r_{k}+b_{k}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \mathrm{E} A_{k} & =A \\
\lim _{k \rightarrow \infty} \mathrm{E} b_{k} & =b
\end{aligned}
$$

where A and b are given by (7) and (8), respectively.
Proof: It is easy to verify that (1) is equivalent to (9), where

$$
\begin{aligned}
A_{k} & =z_{k}\left(\alpha \phi\left(x_{k+1}\right)-\phi\left(x_{k}\right)\right)+I \\
b_{k} & =z_{k} g\left(x_{k}\right)
\end{aligned}
$$

We will study the limit of $\mathrm{E} A_{k}$ and $\mathrm{E} b_{k}$. For all J, we have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \mathrm{E}\left[z_{k} J_{k}\right] & =\lim _{k \rightarrow \infty} \mathrm{E}\left[\sum_{\tau=0}^{k}(\alpha \lambda)^{k-\tau} \phi\left(x_{\tau}\right) J\left(x_{k}\right)\right] \\
& =\lim _{k \rightarrow \infty} \mathrm{E}\left[\sum_{\tau=0}^{k}(\alpha \lambda)^{\tau} \phi\left(x_{k-\tau}\right) J\left(x_{k}\right)\right] \quad\left(\because P^{k}(x, y) \rightarrow \pi(y)\right) \\
& =\mathrm{E}\left[\sum_{\tau=0}^{\infty}(\alpha \lambda)^{\tau} \phi\left(x_{0}\right) J\left(x_{\tau}\right) \mid x_{0} \sim \pi\right] \quad\left(P\left(x_{\tau}=x \mid x_{0}\right)=P^{\tau}\left(x_{0}, x\right)\right) \\
& =\mathrm{E}\left[\sum_{\tau=0}^{\infty}(\alpha \lambda)^{\tau} \phi\left(x_{0}\right)\left(P^{\tau} J\right)\left(x_{0}\right) \mid x_{0} \sim \pi\right] \\
& =\sum_{\tau=0}^{\infty}(\alpha \lambda)^{\tau}<\Phi, P^{\tau} J>_{D}
\end{aligned}
$$

Letting

$$
J\left(x_{k}, x_{k+1}\right)=\alpha \phi\left(x_{k+1}\right)-\phi\left(x_{k}\right)
$$

we conclude that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \mathrm{E} A_{k} & =\sum_{\tau=0}^{\infty}(\alpha \lambda)^{\tau}<\Phi, \alpha P^{\tau+1} \Phi-P^{\tau} \Phi>_{D}+I \\
& =\Phi^{T} D \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau+1} P^{\tau+1} \Phi-\Phi^{T} D \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau} P^{\tau} \Phi+I \\
& =\Phi^{T} D \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau+1} P^{\tau+1} \Phi-\Phi^{T} D \sum_{\tau=1}^{\infty} \lambda^{\tau} \alpha^{\tau} P^{\tau} \Phi-\Phi^{T} D \Phi+I \\
& =\Phi^{T} D \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau+1} P^{\tau+1} \Phi-\lambda \Phi^{T} D \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau+1} P^{\tau+1} \Phi \\
& =(1-\lambda) \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau+1} P^{\tau+1} \Phi \\
& =A .
\end{aligned}
$$

In the fourth equality we have used the assumption that $\Phi^{T} D \Phi=I$.
Similarly, letting

$$
J\left(x_{k}\right)=g\left(x_{k}\right)
$$

yields

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \mathrm{E} b_{k} & =\sum_{\tau=0}^{\infty}(\alpha \lambda)^{\tau}<\Phi, P^{\tau} g>_{D} \\
& =b
\end{aligned}
$$

If $\lambda=1$, we have

$$
\sum_{\tau=0}^{\infty}(\alpha \lambda)^{\tau}\left(g+\alpha P^{\tau} \Phi r_{k}-\Phi r_{k}\right)=J^{*}+(I-\alpha P)^{-1}(\alpha P-I \Phi r)=J^{*}-\Phi r
$$

If $\lambda<1$, then

$$
\begin{aligned}
\sum_{\tau=0}^{\infty}(\lambda \alpha)^{\tau} P^{\tau} & =\sum_{\tau=0}^{\infty} \alpha^{\tau} P^{\tau}(1-\lambda) \sum_{t=\tau}^{\infty} \lambda^{t} \\
& =(1-\lambda) \sum_{\tau=0}^{t} \lambda^{\tau} \sum_{t=0}^{\tau} \alpha^{t} P^{t}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\sum_{\tau=0}^{\infty}(\lambda \alpha)^{\tau} P^{\tau}\left(g+\alpha P \Phi r_{k}-\Phi r_{k}\right) & =(1-\lambda) \sum_{\tau=0}^{\infty} \lambda^{\tau} \sum_{t=0}^{\tau} \alpha^{t} P^{t}(g+\alpha P \Phi r-\Phi r) \\
& =(1-\lambda) \sum_{\tau=0}^{\infty} \lambda^{\tau} \sum_{t=0}^{\tau}(\underbrace{\alpha^{t} P^{t} g+\alpha^{t+1} P^{t+1} \Phi r}_{T^{t} \Phi r_{k}}-\Phi r) \\
& =T_{\lambda} \Phi r_{k}-\Phi r_{k}
\end{aligned}
$$

Therefore,

$$
\lim _{k \rightarrow \infty} \mathrm{E}\left[z_{k} d_{k}\right]=<\Phi, T_{\lambda} \Phi r_{k}-\Phi r_{k}>_{D}
$$

Comparing Lemmas 1 and 2, it is clear that $T D(\lambda)$ can be seen as a stochastic approximations version of AVI; in particular, TD's equations can be written as

$$
r_{k+1}=r_{k}+\gamma_{k}\left(A r_{k}+b-r_{k}+w_{k}\right)
$$

where $w_{k}=\left(A_{k}-A\right) r_{k}+\left(b_{k}-b\right)$. If r_{k} remains bounded, we should have $\lim _{k \rightarrow \infty} \mathrm{E} w_{k}=0$, so that the noise is zero-mean asymptotically. Note however that the noise is not independent of the past history, and in fact follows a Markov chain, since matrices A_{k} and b_{k} are functions of x_{k} and x_{k+1}. This makes application of the Lyapunov analysis for convergence of $T D(\lambda)$ difficult, and we must resort to the ODE analysis instead. The next theorem provides the convergence result.

Theorem 2 Suppose that P is irreducible and aperiodic and that $\sum_{k=1}^{\infty} \gamma_{k}=\infty$ and $\sum_{k=1}^{\infty} \gamma_{k}^{2}<\infty$. Then $r_{k} \rightarrow r^{*}$ w.p.1, where $\Phi r^{*}=\Pi T_{\lambda} \Phi r^{*}$.

To prove Theorem 2, we first state without proof the following theorem.

Theorem 3 Let $r_{k+1}=r_{k}+\gamma_{k}\left(A\left(x_{k}\right) r_{k}+b\left(x_{k}\right)\right)$. Suppose that
(a) $\sum_{k=1}^{\infty} \gamma_{k}=\infty, \sum_{k=1}^{\infty} \gamma_{k}^{2}<\infty$
(b) x_{k} follows a Markov chain and has stationary distribution π
(c) $A=\mathrm{E}[A(x) \mid x \sim \pi]$ is negative definite, and $b=\mathrm{E}[b(x) \mid x \sim \pi]$
(d) $\left\|\mathrm{E}\left[A\left(x_{k}\right) \mid x_{0}\right]-A\right\| \leq C \rho^{k}, \forall x_{0}, \forall k$, and $\left\|\mathrm{E}\left[b\left(x_{k}\right) \mid x_{0}\right]-b\right\| \leq C \rho^{k}, \forall x_{0}, \forall k$

Then $r_{k} \rightarrow r^{*}$ w.p.1, i.e., $A r^{*}+b=0$.
Sketch of Proof of Theorem 2 We verify that conditions (a)-(d) of Theorem 3 are satisfied.
Conditions (a) and (b) are satisfied by assumption.
(c) For all r, we have

$$
\begin{aligned}
r^{T} A r & =r^{T}<\Phi,(1-\lambda) \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau+1} P^{\tau+1} \Phi r-\Phi r>_{D} \\
& =<\Phi r, \underbrace{(1-\lambda) \sum_{\tau=0}^{\infty} \lambda^{\tau} \alpha^{\tau+1} P^{\tau+1} \Phi r>_{D}}_{\bar{T}_{\lambda} \phi r, \text { a contraction w.r.t. }\|\cdot\|_{2, D}}-\|\Phi r\|_{2, D}^{2} \\
& \leq\|\Phi r\|_{2, D}\left\|\bar{T}_{\lambda} \Phi r\right\|_{2, D}-\|\Phi r\|_{2, D}^{2} \\
& \leq \beta\|\Phi r\|_{2, D}^{2}-\|\Phi r\|_{2, D}^{2} \quad(\beta \leq \alpha) \\
& <0
\end{aligned}
$$

Hence, A is negative definite.
(d) We must consider the quantities

$$
\begin{aligned}
\mathrm{E}\left[A_{k}-A\right] & =\mathrm{E}\left[z_{k}\left(\alpha \phi\left(x_{k+1}\right)-\phi\left(x_{k}\right)-A\right]\right. \\
\mathrm{E}\left[b_{k}-b\right] & =\mathrm{E}\left[z_{k} g\left(x_{k}\right)-b\right] .
\end{aligned}
$$

This involves a comparison of $\mathrm{E}\left[\alpha z_{k} \phi\left(x_{k+1}\right], \mathrm{E}\left[z_{k} \phi\left(x_{k}\right)\right]\right.$ and $\mathrm{E}\left[z_{k} g\left(x_{k}\right)\right]$ with their limiting values as k goes
to infinity. Let us focus on term $z_{k} \phi\left(x_{k}\right)$; the other terms involve similar analysis. We have

$$
\begin{aligned}
\mathrm{E}\left[z_{k} \phi\left(x_{k}\right) \mid x_{0}\right] & =\mathrm{E}[\underbrace{\sum_{t=0}^{k}(\alpha \lambda)^{k-t} \phi\left(x_{t}\right)}_{z_{k}} \phi\left(x_{k}\right) \mid x_{0}=x] \\
& =\mathrm{E}\left[\sum_{t=-\infty}^{k} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \mid x_{t} \sim \pi, t \leq 0\right] \\
& +\mathrm{E}\left[\sum_{t=0}^{k} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \mid x_{0}=x\right] \\
& -\mathrm{E}\left[\sum_{t=0}^{k} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \mid x_{0} \sim \pi\right] \\
& -\mathrm{E}\left[\sum_{t=-\infty}^{-1} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \mid x_{t} \sim \pi\right]
\end{aligned}
$$

It follows from basic matrix theory that $\left|P\left(x_{t}=x \mid x_{0}\right)-\pi\left(x_{t}\right)\right| \leq C \rho^{t}$, where ρ corresponds to the second highest eigenvalue of P , which is strictly less than one since P is irreducible and aperiodic. Therefore we have

$$
\begin{aligned}
& \left|\mathrm{E}\left[\sum_{t=0}^{k} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \mid x_{0}=x\right]-\mathrm{E}\left[\sum_{t=0}^{k} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \mid x_{0} \sim \pi\right]\right| \\
& \leq\left|\mathrm{E}\left[\left.\sum_{t=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \right\rvert\, x_{0}=x\right]-\mathrm{E}\left[\left.\sum_{t=0}^{\left\lfloor\frac{k}{2}\right\rfloor} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \right\rvert\, x_{0} \sim \pi\right]\right|+ \\
& +\left|\mathrm{E}\left[\left.\sum_{t=\left\lfloor\frac{k}{2}\right\rfloor+1}^{k} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \right\rvert\, x_{0}=x\right]-\mathrm{E}\left[\left.\sum_{t=\left\lfloor\frac{k}{2}\right\rfloor+1}^{k} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \right\rvert\, x_{0} \sim \pi\right]\right| \\
& \leq M\left((\alpha \lambda)^{k / 2}+\rho^{k / 2}\right)
\end{aligned}
$$

for some $M<\infty$. Moreover,

$$
\mathrm{E}\left[\sum_{t=-\infty}^{-1} \phi\left(x_{t}\right)(\alpha \lambda)^{k-t} \phi\left(x_{k}\right) \mid x_{0} \sim \pi\right] \leq M(\alpha \lambda)^{k}
$$

