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Temporal-Difference Learning 

We now consider the problem of computing an appropriate parameter r̃, so that, given an approximation 

architecture J̃(x, r), J̃(·, r̃) ≈ J∗(·). 
A class of iterative methods are the so-called temporal-difference learning algorithms, which generates a 

series of approximations J̃k = J̃(·, rk ) as follows. Consider generating a trajectory (x1, u1, . . . , xk , uk), where 

uk is the greedy policy with respect to J̃k. We then have the error/temporal differences 

˜dk = guk (xk) + αJ̃k (xk+1, rk) − Jk (xk , rk ), 

˜which represent an approximation to the Bellman error (T J̃k )(xk ) − Jk (xk) at state xk . Based on the 

temporal differences, an intuitive way of updating the parameters rk is to make updates proportional to the 

observed Bellman error/temporal difference: 

rk+1 = rk + γk dkzk , 

where γk is the step size and zk is called an eligibility vector — it measures how much updates to each 

component of the vector rk would affect the Bellman error. 
To gather more intuition about how to choose the eligibility vector, we will consider the case of au

tonomous systems, i.e., systems that do not involve control. In this case, we can estimate the cost-to-go 

function via sampling as follows. Suppose that we have a trajectory x1, . . . , xn. Then we have 
n�

n−1J∗(x1) g(xt)α≈ 
t=1 
n�

n−2J∗(x2) g(xt)α≈ 
t=2 

. . . 

In other words, from a trajectory x1, . . . , xn, we can derive pairs (xi, Ĵ(xi)), where Ĵ(xi) is a noisy and 

biased estimate of J∗(xi). Therefore we may consider fitting the approximation J̃(x, r) by minimizing the 

empirical squared error: 

min 
n� 

r 
t=1 

˜
�
Ĵn(xt) − J(xt, r)

�2 
(1) 

We derive an incremental, approximate version of (1). First note that Ĵn(xt) could be updated incrementally 

as follows: 
n+1−tĴn+1(xt) = Ĵn(xt) + α g(xn+1) (2) 

Alternatively, we may use a small-step update of the form 

Ĵn+1(xt) = Ĵn(xt) + γ 

⎛
⎝ 

⎞
⎠ , (3) 

+1n�
ˆαj−t g(xj ) − Jn(xt) 

j=t 
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which makes Ĵn+1(xt) an average of the “old estimate” Ĵn(xt) and the “new estimate” (2). Finally, we may 

approximate (3) to have Ĵn(xt) function d1, d2, . . . , dn: 
n�

ˆ ˆ ˆαj−t g(xj ) − Jn(xt) = g(xt) + αĴn(xt+1) − Jn(xt) + α(g(xt+1) + αĴn(xt+2) − Jn(xt+1)) + . . . 
j=t 

n−t(g(xn) + αĴn(xn+1) − Ĵn(xn)) − αn+1−tĴn(x+α n+1 
n�

αj−tdt.≈ 
j=t 

Hence 

Ĵn+1(xt) = Ĵn(xt) + γ 
+1n�

αj−tdj . (4) 
j=t 

Finally, we may consider having the sum in (1) implemented incrementally, so that the previous temporal 
differences do not have to be stored: 

n+1−tdĴn+1(xt) = Ĵn(xt) + γα n+1. 

Hence, in each time stage, we would like to find rn minimizing 

min 
n� 

r 
t=1 

˜
�
Ĵn(xt) + γαn−tdn − J(xt, r)

�2 
. (5) 

Starting from the solution rn to the problem at stage n, we can approximate the solution of the problem at 
stage n + 1 by updating rn+1 along the gradient of (5). This leads to 

n�
αt−n �r J̃(rn, xt)+ γ drn+1 = r n+1.n 

t=1 

We can also have an incremental version, given by 

rk+1 = rk + γkzk dk 

zk = αzk−1 + �r J̃(xk , rk ) 

The algorithm above is known as TD(1). We have the generalization TD(λ), λ ∈ [0, 1]. 

rk+1 = rk + γk zkdk TD(λ) 
zk = αλzk−1 + �r J̃(xk , rk ) 

Before analyzing the behavior of TD(λ), we are going to study a related, deterministic algorithm — 

approximate value iteration. The analysis of TD(λ) will be based on interpreting it as a stochastic approxi
mation version of approximate value iteration. 

Approximate Value Iteration 

Define the operator Tλ 

TλJ = (1 − λ) 
∞

m=0 

λmTm+1J, for λ ∈ [0, 1) 

TλJ = J∗, for λ = 1. 

We can show that Tλ satisfies the same properties as T : 
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Lemma 1 

�TλJ − Tλ 
¯ J�∞ ≤ 

α(1 − λ) 
1 − αλ 

�J − ¯ J�∞, 

J∗ = TλJ∗ 

∀J, ¯ J 

The motivation for Tλ is as follows. Recall that, in value iteration, we have Jk+1 = TJk. However, we 

could also implement value iteration with Jk+1 = TLJk , which implies L steps look ahead. Finally, we can 

have an update that is a weighted average over all possible values of L; Jk+1 = TλJk gives one such update. 
In what follows, we are going to restrict attention to linear approximation architectures. Let 

P�
J̃(x, r) = φi(x)ri, and 

i=1 ⎡
⎢⎢⎢⎢

⎤
⎥⎥⎥⎥

φ1(1) φ2(1) . . . φP (1) 
φ1(2) φ2(2) . . . φP (2) 
. . . . . . . . . . . . 
φ1(n) φ2(n) . . . φP (n) 

Φ = 
⎣ ⎦ 

J̃ = Φr 

Moreover, we are going to consider only autonomous systems. We denote by P the transition matrix 

associated with the system. 
Let us introduce some notation. First, we have 

⎡
⎢⎢⎢⎢

d(1) 0 . . . 0 

0 d(2) . . . 0 

⎤
⎥⎥⎥⎥D = . . . ⎣ . . . . . . . . . 

0 0 . . . d(n)
⎦ 

where d : S → (0, 1)S is a probability distribution over states. Define the weighted Euclidean norms 

�J�2,D = JT DJ = 
� 

d(x)J2(x) 
x∈S 

¯ ¯ < J J >D = JT DJ = 
� 

d(x)J(x)J̄(x) 
x∈S 

For simplicity, we assume that φi, i = 1, . . . , p is an orthonormal basis to the subspace J = Φr, i.e., 

φi�2,D = 1 and < φi, φj >= 0, ∀i = j 

In matrix notation, we have 

ΦT DΦ = I. 

We are going to use the following projection operator Π: 

ΠJ = ΦrJ , where rJ = arg min �Φr − J�2,D 
r 
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J ∗ 

TλΦrk 
J = Φr 

ΠJ ∗ 

Φrk+1 = ΠTλΦrk 

Φrk 

Figure 1: Approximate Value Iteration 
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We can characterize Π explicitly by solving the associated minimizing problem. We have 

rJ = arg min 
r 
�Φr − J� 2 

2,D 

= arg min 
r 

(Φr − J)T D(Φr − J) 

= 
�
ΦT DΦ

�−1 
ΦT DJ 

= < Φ, J >D 

Hence, we have ΠJ = Φ < Φ, J >D . 

Lemma 2 For all J , 

ΠJ = Φ < Φ, J >D (6) 

< ΠJ, J −ΠJ >D = 0 (7) 
2 2 �J� 2 = �ΠJ�2,D + �J −ΠJ�2,D (8)2,D 

Note that Φrk+1 = ΠTλΦrk . We know that the projection Π is a nonexpansion from 

�ΠJ −ΠJ̄  �2,D = �Π(J − J̄)�2,D ≤ �J − J̄  �2,D . 

Moreover, Tλ is a contraction: 
¯ ¯ �TλJ − TλJ�∞ ≤ K�J − J�∞. 

However, the fact that Π and Tλ are a non-expansion and a contraction with respect to different norms 
implies that convergence of approximate value iteration cannot be guaranteed by a contraction argument, as 
was the case with exact value iteration. Indeed, as illustrated in Figure 2, ΠTλ is not necessarily a contraction 

with respect to any norm, and one can find counterexamples where TD(λ) fails to converge. 
As it turns out, there is a special choice of D that ensures convergence of TD(λ) for all λ ∈ [0, 1]. Before 

proving that, we need the following auxiliary result. First, we present two definitions involving Markov 

chains. 

Definition 1 A Markov chain is called irreducible if, for every pair of states x and y, there is k such that 
P k (x, y) > 0. 

Definition 2 A state x is called periodic if there is m such that P k (x, x) > 0 iff k = mn, for some 

n ∈ {0, 1, 2, . . . }. A Markov chain is called aperiodic if none of its states is periodic. 

Lemma 3 Given a transition matrix P and assume that P is irreducible and aperiodic. Then there exists a 

unique π such that 
πT P = πT 

and ⎡
⎢⎢⎢⎢

πT 

πT 

⎤
⎥⎥⎥⎥Pn → . . 

⎣ . . 
πT

⎦ 
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Φrk 

TλΦrk 

ΠTλΦrk 

J ∗ 

Figure 2: TλΦrk must be inside the smaller square and ΠTλΦrk must be inside the circle, but ΠTλΦrk may 

be outside the larger square and further away from J ∗ than Φrk . 
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This lemma was proved in Problem Set 2, for the special case where P (x, x) > 0 for some x. 
We are now poised to prove the following central result used to derive a convergent version of TD(λ): 

Lemma 4 Suppose that the transition matrix P is irreducible and aperiodic. Let 
⎡
⎢⎢⎢⎢

π1 0 . . . 0 

0 π2 . . . 0 

⎤
⎥⎥⎥⎥D = . . . , 

⎣ . . . . . . . . . 
0 0 . . . π|S| 

⎦ 

where π is the stationary distribution associated with P . Then 

�PJ� 2,D .2,D ≤ �J�

Proof: 
�2�� 

P (x, y)J(y)π(x)2 �PJ� = 2,D 
x∈S 

π(x) 
� 

P (x, y)J2(y) 

y 

≤ 
x∈S y 

π(x)P (x, y)J2(y)= 
y x 

π(y)J2(y)= 
y 

�J� 2= 2,D 

The first inequality follows the Jensen’s inequality and the third equality holds because π is a stationary 

distribution. 

Based on the previous lemma, we can show that Tλ is a contraction with respect to � · �2,Dπ , where 
⎡
⎢⎢⎢⎢

π1 0 . . . 0 

0 π2 . . . 0 

⎤
⎥⎥⎥⎥Dπ = . . . ⎣ . . . . . . . . . 

0 0 . . . π|S| 

⎦ 

and π is the stationary distribution of the transition matrix P . It follows that, if the projection Π is performed 

with respect to � · �2,Dπ , ΠTλ becomes a contraction with respect to the same norm, and convergence of 
TD(λ) is guaranteed. 

Lemma 5 

¯(i) �TJ − T J̄  �2,Dπ ≤ α�J − J�2,Dπ 

¯(ii) �TλJ − TλJ̄  �2,Dπ 

α(1 − α) 
2,Dπ≤ 

1 − αλ 
�J − J�

¯(iii) �ΠTλJ −ΠTλJ̄  �2,Dπ 

α(1 − α) 
2,Dπ≤ 

1 − αλ 
�J − J�
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Proof of (1) 

¯ �TJ − TJ�2,Dπ = �g + αPJ − (g + α J̄)�2,Dπ 

¯ = α�PJ − PJ�2,Dπ 

¯ α�J − J�2,Dπ≤ 

and ⎡
⎢⎢⎢⎢

π1 0 . . . 0 

0 π2 . . . 0 

⎤
⎥⎥⎥⎥Dπ = . 

⎣ 
... 

... . . . 
... 

0 0 . . . π|S| 

⎦ 

2 2(1 )α λ− 

� 

Then rk r∗ with → 

�Φr∗J∗�2,Dπ ≤ Kα,λ�ΠJ∗ − J∗�2,Dπ . 

Proof: Convergence follows from (iii). We have Φr∗ = ΠTλΦr∗ and J∗ − TλJ∗. Then 

2 2 �Φr∗ − J∗ 2,Dπ 
= �Φr∗ − ΠJ∗ + ΠJ∗ − J∗ 2,Dπ 

2 2= �Φr∗ − ΠJ∗ 2,Dπ 
+ �ΠJ∗ − J∗ 2,Dπ 

(orthogonal) 
2 2= �ΠTλΦr∗ − ΠTλJ∗ 2,Dπ 

+ �ΠJ∗ − J∗ 2,Dπ 

2 2 

(1 − αλ)2 
�Φr∗ − J∗ 2,Dπ 

+ �ΠJ∗ − J∗ 2,Dπ
≤ � � 

γ 

Therefore 
1 �Φr∗J∗�2,Dπ 1 − γ

�ΠJ∗ − J∗�2,Dπ≤ 

8 

Theorem 1 Let 
Φrk+1 = ΠTλΦrk 
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