
� 

1 

2.997 Decision-Making in Large-Scale Systems March 12 

MIT, Spring 2004 Handout #16 

Lecture Note 12 

Value Function Approximation and Policy Performance 

Recall that two tasks must be accomplished in order to for a value function approximation scheme to be 

successful: 

1. We must pick a “good” representation J̃ , such that J�(·) � J̃(·, r) for at least some parameter r; 

2. We must pick a “good” parameter r̃, such that J�(x) � J̃(x, r̃). 

Consider approximating J� with a linear architecture, i.e., let 

p 

J̃(x, r) = �i(x)ri, 
t=1 

for some functions �i, i = 1, . . . , p. We can define a matrix � ∼ ∗|S|×p given by 
⎤ � 

| | 
⎥ 

⎣ .� = 
� �1 . . . �p 

� 

| | 

With this notation, we can represent each function J̃(·, r) as 

J̃ = �r. 

Fig. 1 gives a geometric interpretation of value function approximation. We may think of J � as a vector 

in ∗|S|; by considering approximations of the form J̃ = �r, we restrict attention to the hyperplane J = �r 

in the same space. Given a norm ≤ · ≤ (e.g., the Euclidean norm), an ideal value function approximation 

algorithm would choose r minimizing ≤J� −�r≤; in other words, it would find the projection �r� of J� onto 

the hyperplane. Note that ≤J� −�r�≤ is a natural measure for the quality of the approximation architecture, 

since it is the best approximation error that can be attained by any algorithm given the choice of �. 

Algorithms for value function approximation found in the literature do not compute the projection �r� , 

since this is an intractable problem. Building on the knowledge that J � satisfies Bellman’s equation, value 

function approximation typically involves adaptation of exact dynamic programming algorithms. For in­

stance, drawing inspiration from value iteration, one might consider the following approximate value iteration 

algorithm: 

�rk+1 = �T�rk, 

where � is a projection operator which maps T�rk back onto the hyperplane �r. 

Faced with the impossibility of computing the “best approximation” �r �, a relevant question for any 

value function approximation algorithm A generating an approximation �rA is how large ≤J� − �rA≤ is in 

comparison with ≤J� − �r �≤. In particular, it would be desirable that, if the approximation architecture 

1 



��

��


 � 

2 

is capable of producing a good approximation to J �, then the approximation algorithm should be able to 

produce a relatively good approximation. 

Another important question concerns the choice of a norm ≤ · ≤ used to measure approximation errors. 

Recall that, ultimately, we are not interested in finding an approximation to J �, but rather in finding a good 

policy for the original decision problem. Therefore we would like to choose ≤ · ≤ to reflect the performance 

associated with approximations to J � . 

State 2 

State 1 

State 3 

J� 

J r 

J̃( �) 

= �

x, r 

Figure 1: Value Function Approximation 

Performance Bounds 

We are interested in the following question. Let uJ be the greedy policy associated with an arbitrary 

function J , and JuJ be the cost-to-go function associated with that policy. Can we relate the increase in 

cost ≤JuJ − J �≤ to the approximation error ≤J � − J ≤? 

Recall the following theorem, from Lecture Note 3: 

Theorem 1 Let J be arbitrary, uJ be a greedy policy with respect to J . 1 Let JuJ be the cost-to-go function 

for policy uJ . Then 

≤JuJ − J �≤� ∀ 
2 

≤J − J �≤�. 
1 − π 

The previous theorem suggests that choosing an approximation J̃ that minimizes ≤J � − J̃≤� may be an 

appropriate choice. Indeed, if ≤J � − J̃≤� is small, then we have a guarantee that the cost increase incurred 

by using the (possibly sub-optimal) policy uJ is also relatively small. However, what about the reverse? 

If ≤J � − J̃≤� is large, do we necessarily have a bad policy? Note that, for problems of practical scale, it 

1That is, TuJ J = TJ , and uJ (x) = arg mina ga(x) + � 
� 

y Pa(x, y)J(y) . 

2 



is unrealistic to expect that we could approximate J� uniformly well over all states (which is required by 

Theorem 1) or that we could find a policy uJ that yields a cost-to-go uniformly close to J� over all states. 

The following example illustrates the notion that having a large error ≤J � − J̃≤� does not necessarily 

lead to a bad policy. Moreover, minimizing ≤J� − J̃≤� may also lead to undesirable results. 

Example 1 Consider a single queue with controlled service rate. Let x denote the queue length, B denote 

the buffer size, and 

Pa(x, x + 1) = ν, � a, x = 0, 1, . . . , B − 1 

Pa(x, x − 1) = µ(a), � a, x = 1, 2, . . . , B, 

Pa(B,B + 1) = 0, � a 

ga(x) = x + q(a) 

Suppose that we are interested in minimizing the average cost in this problem. Then we would like to find 

an approximation to the differential cost function h� . Suppose that we consider only linear approximations: 

h̃(x, r) = r1 + r2x. At the top of Figure 1, we represent h� and two possible approximations, h1 and h2. h1 

is chosen so as to minimize ≤h� − h̃≤. Which one is a better approximation? Note that h1 yields smaller 

approximation errors than h2 over large states, but yields large approximation errors over the whole state 

space. In particular, as we increase the buffer size B, it should lead to worse and worse approximation errors 

in almost all states. h2, on the other hand, has an interesting property, which we now describe. At the 

bottom of Figure 1, we represent the stationary state distribution �(x) encountered under the optimal policy. 

Note that it decays exponentially with x, and large states are rarely visited. This suggests that, for practical 

purposes, h2 may lead to a better policy, since it approximates h� better than h1 over the set of states that 

are visited almost all of the time. 

What the previous example hints at is that, in the case of a large state space, it may be important to 

consider errors ≤J� − J̃≤ that differentiate between more or less important states. In the next section, we 

will introduce the notion of weighted norms and present performance bounds that take state relevance into 

account. 

2.1 Performance Bounds with State-Relevance Weights 

We first introduce the following weighted norms: 

||J� − J̃(·, r)||� = max 
x�S 

|J�(x) − J̃(x, r)| 

≤J� − J̃(·, r)≤�,� = max 
x�S 

�(x)|J�(x) − J̃(x, r)| 
� 

≤J� − J̃(·, r)≤1,� = �(x)|J�(x) − J̃(x, r)| (� > 0) 
x�S 

� � 
= E |J�(x) − J̃(x, r)| : x � � 

With this notation, we can prove the following theorem. 

Theorem 2 Let J be such that J ∀ TJ . Let JuJ be the cost-to-go of the greedy policy uJ . Then, for all 

c > 0, 

≤JuJ − J�≤1,c ∀ 
1 

≤J − J�≤1,µc,J1 − π 

3 



h(x)


B 

x 

h
2 

h
1 

h
≈ 

x 

Dist. of 

Figure 2: Illustration of Performance Bounds for Example 1


4


x 



� 
� 

� � � 

� 

� 

3 

where 
T	 T πtP t µcJ 

= (1 − π)c T (I − πPuJ )
−1 = (1 − π)c uJ 

t=0 

or equivalently 

µc,J (x) = (1 − π) c(y) πtPu
t 

J 
(y, x), �x ∼ S. 

y t=0 

Proof: We have J ∀ T J ∀ J � ∀ JuJ . Then 

T≤JuJ − J�≤1,c = c (JuJ − J�) 

∀ c T (JuJ − J) 
T 

⎦ 
= c (I − πPuJ )

−1 guJ − J) 
⎡ 

T = c	 (I − πPuJ )
−1(guJ + πPuJ J − J) 

T = c (I − πPuJ )
−1(T J − J) 

T∀ c	 (I − πPuJ )
−1(J� − J) 

1 
= ≤J� − J≤1,µc,J1 − π 

Comparing Theorems 1 and 2, we have 

≤JuJ − J�≤� ∀ 
2 

≤J − J�≤�
1 − π 

≤JuJ − J�≤1,c ∀ 
1 

≤J − J�≤1,µc,J . 1 − π 

There are two important differences between these bounds: 

1. The first bound relates performance to the worst possible approximation error over all states, whereas 

the second involves only a weighted average of errors. Therefore we expect the second bound to exhibit 

better scaling properties. 

2. The first bound presents	 a worst-case guarantee on performance: the cost-to-go starting from any 

initial state x cannot be greater than the stated bound. The second bound presents a guarantee on the 

expected cost-to-go, given that the initial state is distributed according to distribution c. Although this 

is a weaker guarantee, it represents a more realistic requirement for large-scale systems, and raises the 

possibility of exploiting information about how important each different state is in the overall decision 

problem. 

From Value to Actions 

The analysis presented in the previous sections is based on the greedy policy u ˜ associated with approxima-J 

tion J̃ . In order to use this policy, we need to compute 
⎢	 � 

u(x) = arg min ga(x) + π Pa(x, y)J̃(y, r) .	 (1) 
a�A 

y 

5 



� 

� 

� 

� 

� 

� 

This step is typically done in real-time, as the system is being controlled. If the set of available actions A 

is relatively small and the summation y Pa(x, y)J̃(y, r) can be computed relatively fast, then evaluating 

(1) directly when an action at state x is needed is a feasible approach. However, if this is not the case, 

alternative solutions must be considered. We describe a few: 

∗ •	 If the action set is relatively small but there are many y s to sum over, we can estimate 

Pa(x, y)J̃(y, r) (2) 
y 

by sampling: 
N

1 
J(yi, r).	 (3)

N 
i=1 

•	 In some cases, a very large number of samples may be required for the empirical average (3) to be a 

reasonable estimate of (2). In these cases, the computation of (2) or (3) could be done offline, and 

stored via Q-factors: 

QJ̃(x, a) = ga(x) + π Pa(x, y)J̃(y, r) 
y 

Clearly, QJ (x, a) requires space proportional to the size of the state space, and cannot be stored 

exactly. In the same spirit as value function approximation, we can approximate it with a parametric 

representation: 

Q(x, a, s) � QJ̃(x, a) 

We may find an approximate parameter s based on the approximation J̃ by solving 

N
1	 2

min (Q(x, a, s) − QJ̃ (x, a)) (offline) 
s	 N 

i=1 

or, alternatively, we could do value function approximation to approximate the Q-factor directly. 

•	 Finally, if the action space is too large, computing mina�A Q(x, a, s) may be prohibitively expensive 

as well. As an alternative, we may consider also a parametric representation for policies: 

u(x) � u(x, t) 

We may find an appropriate parameter t by fitting u(x, t) to the greedy policy u(x), computed offline: 

N 

min
1 

(u(xi) − u(xi, t))
2 

t	 N 
i=1 

or consider algorithms which mix together value function approximation and policy approximation. 

6 


