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Lecture Note 11 

1 Complexity and Model Selection 

In this lecture, we will consider the problem of supervised learning. The setup is as follows. We have 

pairs (x, y), distributed according to a joint distribution P (x, y). We would like to describe the relationship 
ˆbetween x and y through some function f̂ chosen from a set of available functions C, so that y � f(x). 

Ideally, we would choose f̂ by solving 
� ⎦ 

f̂ = argming�C E (y − f̂)2 x, y ∪ P (test error) |

However, we will assume that the distribution P is not known, but rather, we only have access to samples 

(xi, yi). Intuitively, we may try to solve 

n 
� �21 

min yi − f̂(xi) (training error) 
f̂ n 

i=1 

instead. It also seems that, the richer the class C is, the better the chance to correctly describe the relationship 

between x and y. In this lecture, we will show that this is not the case, and the appropriate complexity of C 

and the selection of a model for describing how x and y related must be guided by how much data is actually 

available. This issue is illustrated in the following example. 

2 Example 

Consider fitting the following data by a polynomial of finite degree: 
1 2 3 4 

y 2.5 3.5 4.5 5.5 
Among several others, the following polynomials fit the data perfectly: 

ŷ = x + 1.5 

2 ŷ = 2x 4 − 20x 3 + 70x − 99x + 49.5 
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Which polynomial should we choose? 
x 1 2 3 4 

Now consider the following (possibly noisy) data: 
y 2.3 3.5 4.7 5.5 

Fitting the data with a first-degree polynomial yields ˆ = 1.03x + 1.3; fitting it with a fourth-degree y 

y = 2x4 − 20.0667x3 + 70.4x − 99.5333x + 49.5.polynomial yields (among others) ˆ 2 

Which polynomial should we choose? 

1 1.5 2 2.5 3 3.5 4 
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Training error vs. test error. 

It seems intuitive in the previous example that a line may be the best description for the relationship 

between x and y, even though a polynomial of degree 3 describes the data perfectly in both cases and no 

linear function is able to describe the data perfectly in the second case. Is the intuition correct, and if so, 

how can we decide on an appropriate representation, if relying solely on the training error does not seem 

completely reasonable? 

The essence of the problem is as follows. Ultimately, what we are interested in is the ability of our fitted 

curve to predict future data, rather than simply explaining the observed data. In other words, we would like 

to choose a predictor that minimizes the expected error y(x) − ŷ(x) over all possible x. We call this the | | 
test error. The average error over the data set is called the training error. 

We will show that training error and test error can be related through a measure of the complexity of 

the class of predictors being considered. Appropriate choice of a predictor will then be shown to require 

balancing the training error and the complexity of the predictors being considered. Their relationship is 

described in Fig. 1, where we plot test and training errors versus complexity of the predictor class C when 

the number of samples is fixed. The main difficulty is that, as indicated in Fig. 1, there exists a tradeoff 

between the complexity and the errors, i.e., training error and the test error; while the approximation error 

over the sampled points goes to zero as we consider richer approximation classes, the same is not true for 

the test error, which we are ultimately interested in minimizing. This is due to the fact that, with only 

finite amount of data and noisy observations yi, if the class C is too rich we may run into overfitting — 

fitting the noise in the observations, rather than the underlying structure linking x and y. This leads to poor 

generalization from the training error to the test error. 

We will investigate how bounds on the test error based on the training error and the complexity of C may 

be developed for the special case of classification problems — i.e., problems where y ≤ {−1, +1}, which may 

be seen as an indicating whether xi belongs in a certain set or not. The ideas and results easily generalize 

to general function approximation. 
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Figure 1: Error vs. degree of approximation function 

3.1 Classification with a finite number of classifiers 

Suppose that, given n samples (xi, yi), i = 1, . . . , n, we need to choose a classifier hi from a finite set of 

classifiers f1, . . . , fd. 

Define 

�(k) = E[ y − fk(x) ]|
n 

|
1 

�̂n(k) = yi − fk (xi) . 
n 

| |
i=1 

In words, �(k) is the test error associated with classifier fk , and �̂n(k) is a random variable representing the 

training error associated with classifier fk over the samples (xi, yi), i = 1, . . . , n. As described before, we 

would like to find k� = arg mink �(k), but cannot compute directly. Let us consider using instead 

k̂ = arg min �̂n(k) 
k 

We are interested in the following question: How does the test error �(k̂) compare to the optimal error 

�(k�)? 

Suppose that 

|�̂n(k) − �(k) ∼ �, �k, (1)| 
for some � > 0. Then we have 

�(k) �̂n(k) + �∼ 

test error training error + �,∼ 

and 

k) ∼ �̂n(ˆ�(ˆ k) + � 

∼ �̂n(k�) + � 

∼ �(k�) + 2�. 
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In words, if the training error is close to the test error for all classifiers fk , then using k̂ instead of k� is 

near-optimal. But can we expect (1) to hold? 

Observe that yi − fk (xi) are i.i.d. Bernoulli random variables. From the strong law of large numbers, | |
we must have 

�̂n(k) ∃ �(k) w.p. 1. 

This means that, if there are sufficient samples, (1) should be true. Having only finitely many samples, we 

face two questions: 

(1) How many samples are needed before we have high confidence that �̂n(k) is close to �(k)? 

(2) Can we show that �̂n(k) approaches �(k) equally fast for all fk ≤ C? 

The first question is resolved by the Chernoff bound: For i.i.d. Bernoulli random variables xi, i = 1, . . . , n, 

we have 
� � 

P 
�

�

� 1 
n 

xi − Ex1�
�

� 
> � ∼ 2 exp(−2n�2) 

n 
i=1 

Moreover, since there are only finitely many functions in C, uniform convergence of �̂n(k) to �(k) follows 

immediately: 

P (≈k : �̂(k) − �(k) > �) = �(k) − �(k) > �})| | P (�k{|ˆ |
d 

�(k) − �(k) > �})∼ P ({|ˆ |
k=1 

∼ 2d exp(−2n�2). 

Therefore we have the following theorem. 

Theorem 1 With probability at least 1 − �, the training set (xi, yi), i = 1, . . . , n, will be such that 

test error training error + �(d, n, �)∼ 

where 
⎡ 

1 1 
�(d, n, �) = log 2d + log . 

2n � 

Measures of Complexity 

In Theorem 1, the error �(d, n, �) is on the order of 
∀

log d. In other words, the more classifiers are under 

consideration, the larger the bound on the difference between the testing and training errors, and the 

difference grows as a function of log d. It follows that, for our purposes, log d captures the complexity of 

It turns out that, in the case where there are infinitely many classifiers to choose from, i.e., m = →, a C. 

different notion of complexity leads to a bound similar to that in Theorem 1 

How can we characterize complexity? There are several intuitive choices, such as the degrees of freedom 

associated with functions in S or the length required to describe any function in that set (description length). 

In certain cases, these notions can be shown to give rise to bounds relating the test error to the training error. 

In this class, we will consider a measure of complexity that holds more generally — the Vapnik-Chernovenkis 

(VC) dimension. 
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4.1 VC dimension 

The VC dimension is a property of a class C of functions — i.e., for each set C, we have an associated measure 

of complexity, dV C(C). dV C captures how much variability there is between different functions in C. The 

underlying idea is as follows. Take n points x1, . . . , xn, and consider binary vectors in {−1,+1}n formed 

by applying a function f ≤ C to (xi). How many different vectors can we come up with? In other words, 

consider the following matrix: 
⎤ � 

f1(x1) f1(x2) . . . f1(xn) 
⎥ 
⎥ f2(x1) f2(x2) . . . f2(xn) 

� 
� 

� ⎣ 
. . . . . . . . . . . . 

where fi ≤ C. How many distinct rows can this matrix have? This discussion leads to the notion of shattering 

and to the definition of the VC dimension. 

Definition 1 (Shattering) A set of points x1, . . . , xn is shattered by a class C of classifiers if for any 

assignment of labels in {−1, 1}, there is f ≤ C such that f(xi) = yi,�i. 

Definition 2 VC dimension of C is the cardinality of the largest set it can shatter. 

Example 1 Consider |C = d. Suppose x1, x2, dots, xn is shattered by C. We need d √ 2n and thus n ∼ log d.|
This means that dV C(C) ∼ log d. 

Example 2 

2Consider C = {hyperplanes in ≥2}, Any two points in ≥ can be shattered. Hence, dV C(C) √ 2. Consider 

any three points in ≥2 , C can shatter these three points. Hence dV C(C) √ 3. Since C cannot shatter any 

four points in ≥2 , hence dV C(C) √ 3. It follows that dV C(C) = 3. Moreover, it can be shown that, if 

= {hyperplanes in ≥ }, then dV C(C) = n + 1. C n

Example 3 If C is the set of all convex sets in ≥2, we can show that dV C(C) = →. 

It turns out that the VC dimension provides a generalization of the results from the previous section, for 

finite sets of classifiers, to general classes of classifiers: 

Theorem 2 With probability at least 1 − � over the choice of sample points (xi, yi), i = 1, . . . , n, we have 

�(f) ∼ �̂n(f) + �(n, dV C(C), �), �f ≤ C, 

where 

⎢ dV C log( 2n ) + 1 + log( 4
1 
�
)

dV C 
�(n, dV C(C), �) = 

n 

Moreover, a suitable extension to bounded real-valued functions, as opposed to functions taking value in 

{−1,+1}, can also be obtained. It is called the Pollard dimension and gives rise to results analogous to 

Theorem 1 and 2. 

Definition 3 Pollard dimension of C = {f�(x)} = maxs dV C ({I(f�(x) > s(x))}) 
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5 Structural Risk Minimization 

Based on the previous results, we may consider the following approach to selecting a class of functions C 

whose complexity is appropriate for the number of samples available. Suppose that we have several classes 

� . . . Cp. Note that complexity increases from C1 to Cp. We have classifiers f1, f2, . . . , fp which C1 � C2 

minimizes the training error �̂n(fi) within each class. Then, given a confidence level �, we may found upper 

bounds on the test error �(fi) associated with each classifier: 

�(fi) ∼ �̂n(fi) + �(dV C , n, �), 

with probability at least 1 − �, and we can choose the classifier fi that minimizes the above upper bound. 

This approach is called structural risk minimization. 

There are two difficulties associated with structural risk minimization: first, the upper bound provided 

by Theorems 1 and 2 may be loose; second, it may be difficult to determine the VC dimension of a given 

class of classifiers, and rough estimates or upper bounds may have to be used instead. Still, this may be a 

reasonable approach, if we have a limited amount of data. If we have a lot of data, an alternative approach is 

as follows. We can split the data in three sets: a training set, a validation set and a test set. We can use the 

training set to find the classifier fi within each class Ci that minimizes the training error; use the validation 

set to estimate the test error of each selected classifier fi, and choose the classifier f̂ from f1, . . . , fp with the 

smallest estimate; and finally, use the test set to generate an estimate of the test error associated with f̂ . 
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