Problem Set 5

1. Consider the average-cost LP:

$$\begin{aligned} \max_{\lambda,h} & \lambda \\ \text{s.t.} & \lambda e + h \le Th, \end{aligned}$$

where $Th = \min_u g_u + P_u h$.

- (a) Suppose that there is a unique optimal policy u^* , with a single class of recurrent states \mathcal{R} . Show that the optimal solution of the LP is given by (λ^*, \bar{h}) , where λ^* is the optimal average cost and $\bar{h}(x) = h^*(x)$ for all $x \in \mathcal{R}$.
- (b) Provide an example of an MDP such that there is an optimal solution \bar{h} to the LP such that at least one greedy policy with respect to \bar{h} is not optimal.
- (c) Propose an algorithm based on linear programming for computing the differential cost function h^* .
- 2. Let u_h denote the average-cost greedy policy with respect to h, i.e., $u_h = \operatorname{argmin}(g_u + P_u h)$. Let λ_h denote its average cost, and π_h denote its stationary state distribution. Show that

$$\lambda_h - \lambda^* = \pi_h^T (Th - h - \lambda^*) \le \|Th - h - \lambda^*\|_{1, \pi_h}.$$

3. Let h be such that

$$\alpha Th \ge h + \lambda^* e,$$

for some $\alpha < 1$. Let $h_{\alpha} = \min_{u} (I - \alpha P_{u})^{-1} (\alpha g_{u} - \lambda^{*}).$

(a) Show that

$$c^{T}(Th - h - \lambda^{*}e) \leq c^{T}(h_{\alpha} - \Phi r) + \frac{1 - \alpha}{\alpha}c^{T}h_{\alpha}, 0.$$

- (b) Show that $\lim_{\alpha \uparrow 1} (1 \alpha) c^T \max(h_\alpha, 0) = 0.$
- (c) Suppose that there is v such that $\alpha \max_u P_u \Phi v \leq \beta \Phi v$, for some $\beta < 1$ and all v. Denote by \tilde{r} the optimal solution of the LP

$$\begin{aligned} \max_{r} & c^{T} \Phi r \\ \text{s.t.} & \alpha T \Phi r \geq \Phi r + \lambda^{*} e. \end{aligned}$$

Show that

$$c^{T}(T\Phi\tilde{r} - \Phi\tilde{r} - \lambda^{*}e) \leq \frac{2c^{T}\Phi v}{1-\beta} \min_{r} \|h_{\alpha} - \Phi r\|_{\infty, 1/\Phi v} + \frac{1-\alpha}{\alpha}c^{T}h_{\alpha}.$$

(d) Suppose that $\Phi v = e$ for some v. Let $R(\lambda)$ denote the set of optimal solutions to

$$\begin{aligned} \max_r & c^T \Phi r \\ \text{s.t.} & \alpha T \Phi r \geq \Phi r + \lambda e \end{aligned}$$

Let λ and $\bar{\lambda}$ be arbitrary. Show that if u_r is a greedy policy with respect to Φr , for some $r \in R(\lambda)$, then it is also a greedy policy with respect to $\Phi \bar{r}$, for some $\bar{r} \in R(\bar{\lambda})$.