Problem Set 4

- 1. Consider an MDP where actions A are vectors $(A_1, \ldots, A_n) \in \mathcal{A}^n$, for some set \mathcal{A} . Therefore in each time stage the number of actions to be considered is exponential in the number n of action variables. Show that this MDP can be converted into an equivalent one with \mathcal{A} actions in each time stage but a larger state space. (This problem shows that complexity in the action space can be traded for complexity in the state space, which is addressed by value function approximation methods.)
- 2. Show that the VC dimension of the class of rectangles in \Re^d is 2d.
- 3. Another value function approximation algorithm based on temporal differences is called λ least squares policy evaluation (λ -LSPE). We successively approximate the cost-to-go function J^* by $J^* \approx \Phi r_k, k =$ $1, 2, \ldots$ Recall that $\phi(x)$ is the row vector whose *i*th entry corresponds to $\phi_i(x)$. Define the temporal difference relative to approximation r_k :

$$d_k(x,y) = g(x) + \alpha \phi(y)r_k - \phi(x)r_k.$$

Then λ -LSPE updates r_k based on

$$\tilde{r}_{k} = \arg \min_{r} \sum_{m=0}^{k} \left(\phi(x_{m})r - \phi(x_{m})r_{k} - \sum_{l=m}^{k} (\alpha\lambda)^{l-m} d_{k}(x_{l}, x_{l+1}) \right)^{2},$$

$$r_{k+1} = r_{k} + \gamma(\tilde{r}_{k} - r_{k}).$$

The updates can be rewritten recursively as

$$r_{k+1} = r_k + \gamma B_k^{-1} (A_k r_k + b_k),$$

where

$$B_{k} = \sum_{m=0}^{k} \phi(x_{m})\phi(x_{m})',$$

$$A_{k} = \sum_{m=0}^{k} z_{m}(\alpha\phi(x_{m+1}) - \phi(x_{m})),$$

$$b_{k} = \sum_{m=0}^{k} z_{m}g(x_{k}),$$

$$z_{m} = \sum_{l=0}^{m} (\alpha\lambda)^{m-l}\phi(x_{l}).$$

(a) Show that

$$\lim_{k \to \infty} \mathbf{E} A_k = A = \Phi^T D(\alpha P - I) \sum_{m=0}^{\infty} (\alpha \lambda P)^m \Phi,$$
$$\lim_{k \to \infty} \mathbf{E} b_k = b = \Phi^T D \sum_{m=0}^{\infty} (\alpha \lambda P)^m g,$$
$$\lim_{k \to \infty} \mathbf{E} B_k = B = \Phi^T D \Phi.$$

- (b) It can actually be shown that $A_k/k \to A$, $b_k/k \to b$ and $B_k/k \to B$, with probability 1, and r_k converges to $r = -A^{-1}b$. Compare r with the limiting value of r_k achieved by $\text{TD}(\lambda)$.
- (c) The main disadvantage of λ -LSPE is that it requires inverting matrix B_k in each iteration. Note that $B_k \in \Re^{p \times p}$, where p is the number of basis functions. However, there is an efficient incremental scheme for inverting B_k which only requires explicitly inverting scalars in each iteration.
 - i. (Matrix Inversion Lemma) Show that, for all matrices M and N, $(I + MN)^{-1} = I M(I + NM)^{-1}N$.
 - ii. Propose an iterative scheme for computing B_k that only requires scalar inversion on all iterations k = 2, 3, ... (assume that B_k is invertible for every k).