Problem Set 4

1. Consider an MDP where actions A are vectors $\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{A}^{n}$, for some set \mathcal{A}. Therefore in each time stage the number of actions to be considered is exponential in the number n of action variables. Show that this MDP can be converted into an equivalent one with \mathcal{A} actions in each time stage but a larger state space. (This problem shows that complexity in the action space can be traded for complexity in the state space, which is addressed by value function approximation methods.)
2. Show that the VC dimension of the class of rectangles in \Re^{d} is $2 d$.
3. Another value function approximation algorithm based on temporal differences is called λ least squares policy evaluation (λ-LSPE). We successively approximate the cost-to-go function J^{*} by $J^{*} \approx \Phi r_{k}, k=$ $1,2, \ldots$ Recall that $\phi(x)$ is the row vector whose i th entry corresponds to $\phi_{i}(x)$. Define the temporal difference relative to approximation r_{k} :

$$
d_{k}(x, y)=g(x)+\alpha \phi(y) r_{k}-\phi(x) r_{k}
$$

Then λ-LSPE updates r_{k} based on

$$
\begin{aligned}
\tilde{r}_{k} & =\underset{r}{\operatorname{argmin}} \sum_{m=0}^{k}\left(\phi\left(x_{m}\right) r-\phi\left(x_{m}\right) r_{k}-\sum_{l=m}^{k}(\alpha \lambda)^{l-m} d_{k}\left(x_{l}, x_{l+1}\right)\right)^{2} \\
r_{k+1} & =r_{k}+\gamma\left(\tilde{r}_{k}-r_{k}\right)
\end{aligned}
$$

The updates can be rewritten recursively as

$$
r_{k+1}=r_{k}+\gamma B_{k}^{-1}\left(A_{k} r_{k}+b_{k}\right)
$$

where

$$
\begin{aligned}
B_{k} & =\sum_{m=0}^{k} \phi\left(x_{m}\right) \phi\left(x_{m}\right)^{\prime} \\
A_{k} & =\sum_{m=0}^{k} z_{m}\left(\alpha \phi\left(x_{m+1}\right)-\phi\left(x_{m}\right)\right) \\
b_{k} & =\sum_{m=0}^{k} z_{m} g\left(x_{k}\right) \\
z_{m} & =\sum_{l=0}^{m}(\alpha \lambda)^{m-l} \phi\left(x_{l}\right)
\end{aligned}
$$

(a) Show that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \mathrm{E} A_{k} & =A=\Phi^{T} D(\alpha P-I) \sum_{m=0}^{\infty}(\alpha \lambda P)^{m} \Phi \\
\lim _{k \rightarrow \infty} \mathrm{E} b_{k} & =b=\Phi^{T} D \sum_{m=0}^{\infty}(\alpha \lambda P)^{m} g \\
\lim _{k \rightarrow \infty} \mathrm{E} B_{k} & =B=\Phi^{T} D \Phi
\end{aligned}
$$

(b) It can actually be shown that $A_{k} / k \rightarrow A, b_{k} / k \rightarrow b$ and $B_{k} / k \rightarrow B$, with probability 1 , and r_{k} converges to $r=-A^{-1} b$. Compare r with the limiting value of r_{k} achieved by $\operatorname{TD}(\lambda)$.
(c) The main disadvantage of λ-LSPE is that it requires inverting matrix B_{k} in each iteration. Note that $B_{k} \in \Re^{p \times p}$, where p is the number of basis functions. However, there is an efficient incremental scheme for inverting B_{k} which only requires explicitly inverting scalars in each iteration.
i. (Matrix Inversion Lemma) Show that, for all matrices M and $N,(I+M N)^{-1}=I-M(I+$ $N M)^{-1} N$.
ii. Propose an iterative scheme for computing B_{k} that only requires scalar inversion on all iterations $k=2,3, \ldots$ (assume that B_{k} is invertible for every $\left.k\right)$.

