Problem Set 3

- 1. Give an example where Q-learning is implemented with greedy policies (i.e., $u_t = \min_a Q_t(x_t, a)$) and fails to converge. How can it be modified so that convergence is ensured?
- 2. Suppose operator T is a contraction with respect to $\|\cdot\|_2$. Does Gauss-Seidel value iteration converge?
- 3. Suppose operator F satisfies $||FJ F\overline{J}||_2 \leq ||J \overline{J}||_2$ for all J, \overline{J} and there is a unique J^* such that $J^* = FJ^*$.
 - (a) Let $G_{\gamma}J = (1-\gamma)J + \gamma FJ$. Show that there is $\gamma \in (0,1)$ such that $\|G_{\gamma}J J^*\|_2 < \|J J^*\|_2$.
 - (b) Consider $\dot{J}_t = FJ_t J_t$. Show that J_t converges to J^* .
- 4. (bonus) Suppose operator F satisfies $||FJ F\bar{J}||_{\infty} \leq ||J \bar{J}||_{\infty}$ for all J, \bar{J} and there is a unique J^* such that $J^* = FJ^*$. Consider $\dot{J}_t = FJ_t J_t$. Show that J_t converges to J^*