2.996/6.971 Biomedical Devices Design Laboratory

Lecture 3: Diodes and Transistors

Instructor: Hong Ma Sept. 17, 2007

Diode Behavior

Types of Diode

- Silicon diode (0.7V turn-on)
- Schottky diode (0.3V turn-on)
- LED (Light-Emitting Diode) (0.7-5V)
- Photodiode
- Zener
- Transient Voltage Suppressor

Silicon Diode

- 0.7V turn-on
- Important specs:
 - Maximum forward current
 - Reverse leakage current
 - Reverse breakdown voltage
- Typical parts:

Part #	I _{F, max}	I _R	V _{R, max}	Cost
1N914	200mA	25nA at 20V	100	~\$0.007
1N4001	1A	5µA at 50V	50V	~\$0.02

Schottky Diode

- Metal-semiconductor junction
- ~0.3V turn-on
- Often used in power applications
- Fast switching no reverse recovery time
- Limitation: reverse leakage current is higher
 New SiC Schottky diodes have lower reverse leakage

Reverse Recovery Time Test Jig

Reverse Recovery Test Results

Device tested: 2N4004 diode

Light Emitting Diode (LED)

- Turn-on voltage from 0.7V to 5V
- ~5 years ago: blue and white LEDs
- Recently: high power LEDs for lighting
- Need to limit current

LEDs in Parallel

$$I(V) = I_S\left(e^{\frac{V}{V_t}} - 1\right)$$

- I_S is strongly dependent on temp.
- Resistance decreases with increasing temperature
- "Power Hogging"

Photodiode

- Photons generate electron-hole pairs
- Apply reverse bias voltage to increase sensitivity
- Key specifications:
 - Sensitivity (short-circuit current for a given light level)
 - Spectral response
 - Reverse breakdown voltage
 - Dark current

- Utilize reverse breakdown mechanism
- Sharper transition than forward biased diode
- Knee Voltages range from 1.8V to 200V to kV
- Reverse leakage current is higher
- Applications
 - Limiter
 - Voltage reference

Transient Voltage Suppressor

- TVS or TransOrb
- Place in parallel with power supply
- Absorbs over-voltage
- Unipolar or bipolar
- Typical specs:
 - Absorb 1000W for 1ms
 - Breakdown voltage (V_{BR})
 - Standoff voltage (~ $0.9V_{BR}$)
 - V_{supply} <= V_{standoff}

Diode Application: Preventing Inductive Kickback

• From Maxwell's equations:

$$V = -L\frac{dI}{dt}$$

• Instantaneous current switching produces very large voltages!

Bi-directional TVS

Snubber

Voltage References

- With forward biased diode
- With Zener
- Temperature compensated reference bandgap reference

Peak Detector

• AKA: Envelop detector

Rectifier

Diode Clamper

- Zener has bad leakage
- Don't forget about failure mode

Diode Tx-Rx Switch

- Mylar balloon used both as a speaker and a microphone
- D3 and D4 limit the voltage at the input of U2

Transistors

(as switches)

BJT

- Three-terminal device: base, emitter, collector
- Two types: NPN and PNP

Typical parts: 2N3904 (NPN), 2N3906 (PNP)

BJT as a Switch

- Need a resistor to limit base current
- Many IC's leave R_L unconnected open collector output
- Emitter follower: output tracks input with 0.7V offset

Problems with BJTs

- Negative temperature coefficient
- Parallel BJTs: Power hogging
- Large BJTs: secondary breakdown

MOSFET

- Four-terminal device: gate, source, drain, and body
- N-type and P-type
- Negative temperature coefficient → can be parallelized
- Bidirectional so long as body-drain diode remain reverse biased

MOSFET as Switches

Important Specs

- Gate capacitance (C_G)
 - Hundreds of pF
- On resistance (R_{DS(on)})
 - $R_{DS} N-ch < R_{DS} P-ch$
 - Use N-channel whenever possible
- Threshold voltage (V_{TH})
 - As low as 1.8V
- Drain-source breakdown voltage (V_{DSS})

Gate Drivers

- Efficiency dependent on transition time
- Low-side driver low impedance drive
- High-side driver charge pump to create gate voltage above the source voltage

H-Bridges

<u>Key Issue</u>

 Shoot through current

LMD18200

- High, low gate drivers
- Current sensing
- Current limiting
- Thermal shutdown

FIGURE 1. Functional Block Diagram of LMD18200

Reprinted with permission of the National Semiconductor Corporation.

CMOS Analog Switches

Key Issues for Analog Circuits

- Signal range
- Switch on-resistance
- Resistance matching

Logic Gates

Practical inverter (NOT) circuit

Logic Family Conversion Table

TO FROM	TTL	HCT ACT	HC AC	HC, AC @3.3V	NMOS LSI	4000B, 74C @5V	4000B, 74C @10V
TTL	OK	OK	A	OK	OK	A	В
HCT, ACT	OK	OK	OK	NO	OK	OK	В
HC, AC	OK	OK	OK	NO	OK	OK	В
HC, AC @3.3V	OK	OK	NO	OK	OK	В	В
NMOS, LSI	OK	OK	А	OK	OK	А	В
4000B, 74C @5V	OKa	OK	OK	NO	OK	ОК	В
4000B, 74C @10V	С	С	С	С	С	С	ОК

(a) with limited fanout.

A - pullup to +5V, or use HCT as interface.

B - use *i*)OC pullup to +10V, or *ii*)40109, 14504, or LTC1045 level translator.

C - use 74C901/2, 4049/50, 14504, or LTC1045 level translator.