2.996/6.971 Biomedical Devices Design Laboratory

Lecture 9: Analog Signal Processing

Important Dates

In-class presentations: Dec. 5 and 10

Journal articles due: Dec. 12

Presentations at MGH: March 4 and 11 (4-6pm)

Active Filters

- Common Filter Tasks
 - LPF Reduce high frequency noise
 - LPF Smooth out an envelop
 - HPF Block DC signal
 - BPF Remove out-of-band noise
 - Notch filter Remove interference signal
- Ideal filter characteristics
 - Flat passband gain
 - Infinite stop band attenuation
- 1st order filter \rightarrow 20 dB per decade attenuation
- What if we want more?

Filter Roll-off Characteristics

- Butterworth
 - Maximum passband flatness
- Bessel
 - Constant phase dispersion
 - Some pass-band attenuation
 - Slow roll-off
- Tschebyscheff
 - Maximum roll-off steepness
 - Passband ripples
 - Tables available for 1, 2, and
 3dB passband ripple

Figure 11. Transient Response of the Three Filters

2nd Order filter coefficients (Ref: Op Amps for Everyone, R. Mancini, pp 277)

	Bessel	Butterworth	Tschebyscheff (3dB)
R4/R3	0.268	0.568	0.234
Q	0.58	0.71	1.3

2nd Order HPF and BPF

• Sallen-Key HPF

• Multiple Feedback BPF

LTC1563-x Series Pre-packaged LPF

- Two internal opamps
- Integrated capacitors → better accuracy
- ~\$2 in quantity

Images removed due to copyright restrictions.

LTC1062 – DC Accurate 5th order LPF

•Switched cap filter; ~\$3 each in quantity

Images removed due to copyright restrictions.

Synchronous Detection

- What is it for?
 - Measuring small signals in a noisy environment
- How does it work?
 - Modulate the excitation signal
 - Demodulate the sensor output
 - Isolate signal from noise using the frequency and phase
- When to use it?
 - Avoiding interference
 - Sensor noise at DC (1/f noise)
 - AC excitation

• Remember: DC-coupled sensors are susceptible to drift errors

Synchronous Detection

• Phase shift attenuates the signal by a cosine factor!

Analog Multipliers

Low Cost Analog Multiplier

AD633

FEATURES

4-Quadrant Multiplication Low Cost 8-Lead Package Complete – No External Components Required Laser-Trimmed Accuracy and Stability Total Error within 2% of FS Differential High Impedance X and Y Inputs High Impedance Unity-Gain Summing Input Laser-Trimmed 10 V Scaling Reference

APPLICATIONS

Multiplication, Division, Squaring Modulation/Demodulation, Phase Detection Voltage Controlled Amplifiers/Attenuators/Filters CONNECTION DIAGRAMS 8-Lead Plastic DIP (N) Package

8-Lead Plastic SOIC (RN-8) Package

PRODUCT DESCRIPTION

The AD633 is a functionally complete, four-quadrant, analog multiplier. It includes high impedance, differential X and Y inputs and a high impedance summing input (Z). The low impedance output voltage is a nominal 10 V full scale provided by a buried Zener. The AD633 is the first product to offer these features in modestly priced 8-lead plastic DIP and SOIC packages.

The AD633 is laser calibrated to a guaranteed total accuracy of 2% of full scale. Nonlinearity for the Y input is typically less than 0.1% and noise referred to the output is typically less than

- ~\$5 each
- ±15V Supply
 - More expensive versions with better BW and accuracy

All Pass Filter

- Unity gain for all frequencies
- Phase shift = 180° for $\omega \rightarrow 0$
- Phase shift = 90° for $\omega \rightarrow \infty$
- Phase shift = 135° at $\omega = 1/RC$
- Switch R and C to get 0-90° phase shift

Microprocessor-based Sync. Det.

•+1/-1 buffers must have low settling time!

Analog-to-Digital Converters (ADC)

• Fundamental tradeoff between resolution and speed (samples per second)

Analog-to-Digital Converters

- Comparators
 - Differences between a comparator and an Op Amp
 - Hysteresis
- Architectures
 - Flash
 - SAR
 - Sigma-Delta
 - Pipelined
- How to use SAR ADC
 - Flywheel capacitor
- How to use a sigma-delta ADC

Comparators

- A high gain amplifier without feedback
- Hysteresis

ADC Topologies

SAR ADCs

• Free-wheel capacitor

Sigma-Delta ADCs