13.002 Introduction to Numerical Methods for Engineers In-class programming exercises

1. Let a be a positive real number, and let the sequence of real numbers x_{i} be given by

$$
x_{0}=1, \quad x_{i+1}=\frac{1}{2} *\left(x_{i}+\frac{a}{x_{i}}\right),
$$

for $i=0,1,2,3, \ldots$.
The value x_{i} will converge to \sqrt{a} as $i \longrightarrow \infty$ Write a program that reads in the value of a interactively and uses this algorithm to compute the square root of a.

Test your program as you vary the maximum number of iterations of the algorithm is increased from $1,2,3, \ldots$ and determine how many significant digits of precision that you obtain for each. How many iterations are necessary to reach the machine precision of matlab?
2. Write a program to evaluate e by the series:

$$
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots
$$

Test your program as you increase the number of terms in the series. Determine how many significant digits of precision that you obtain in your answer as a function of the number of terms in the series. How many terms are necessary to reach machine precision?
3. Consider the function $x \sin (x)-1$.
(a.) How many roots does this function have in the interval $[0, \pi]$?
(b.) Write a matlab program to find the root(s) using Newton-Raphson iteration with appropriate starting values.
(c.) Make a graph of relative error vs. iteration step for all roots.
(d.) How many iterations are needed to reach an error of less than 10^{-8} ?

