Lecture Notes: Time Value of Money

Discount Rates

$$
\mathrm{PV}\left(\mathrm{~B}_{\mathrm{n}}\right)=B_{n} \cdot \frac{1}{(1+r)^{n}}
$$

What is correct discount rate (r) to use to evaluate investment decisions?

- individual
- corporation
- government (society)

Considerations

1) inflation, real vs. nominal \$
$=\Delta$ in prices
Q: which prices? \rightarrow different ways of measuring of inflation consumer price index producer price index
\rightarrow be consistent, use real $\$$ when possible
2) cost of capital
a. risk free - U.S. government bonds
b. risk premium
c. uncertainty in projections $>r_{R P}$
$r=r_{R F}+r_{R P}$

- $r_{R F}$ is same for government, private
- $r_{R P}$ is greater for private because government can be source of risk represents uncertainty about future projections

Private discount rate $>$ Social discount rate
\rightarrow faster exploitation of natural resources
$\underline{\text { Net Present Value }}=\sum_{i=1}^{n} \frac{B_{i}-C_{i}}{(1+r)^{i}}$
Payback (period) - how long until \$ back? not a real measure of profitability

IRR

- discount rate that results in present value $=0$
- example: $\$ 3000$ inv. yields $\$ 1000 /$ year...
- timing of flows $\sqrt{ }$
- assumes all cash can be invested at same rate ?

NPV

- choose discount rate ("cut-off rate")

Role of financing ("other people's money" or OPM, "leverage")

- compare projects with equal (or no) leverage

Example

2: (next yr) $\$ 50 \mathrm{~m}$ payment
3: $\quad \$ 100 \mathrm{~m}$-> yard
4: $\quad \$ 200 \mathrm{~m}$ payment
@ 10% discount rate
-100.0
$+45.5$
-82.6
$+150.0$ +12.9 @ 10\%

