2.964: Economics of Marine Transportation Industries Prof. Hauke Kite-Powell

Lecture Notes: Time Value of Money

Discount Rates

$$PV(B_n) = B_n \cdot \frac{1}{(1+r)^n}$$

What is correct discount rate (r) to use to evaluate investment decisions?

- individual
- corporation
- government (society)

Considerations

1) inflation, real vs. nominal \$

 $= \Delta$ in prices

Q: which prices? → different ways of measuring of inflation

consumer price index producer price index

→ be consistent, use real \$ when possible

2) cost of capital

a. risk free - U.S. government bonds

b. risk premium

c. uncertainty in projections r_R

 $r = r_{RF} + r_{RP}$

- r_{RF} is same for government, private

- r_{RP} is greater for private because government can be source of risk represents uncertainty about future projections

Private discount rate > Social discount rate

→ faster exploitation of natural resources

Net Present Value =
$$\sum_{i=1}^{n} \frac{B_i - C_i}{(1+r)^i}$$

Payback (period) – how long until \$ back? not a real measure of profitability

IRR

- discount rate that results in present value = 0
- example: \$3000 inv. yields \$1000/year...
- timing of flows √
- assumes all cash can be invested at same rate?

NPV

choose discount rate ("cut-off rate")

Role of <u>financing</u> ("other people's money" or OPM, "leverage")
- compare projects with equal (or <u>no</u>) leverage

Example		@ 10% discount rate
	\$100m now	-100.0
2: (next yr)	\$50m payment	+45.5
3:	\$100m -> yard	-82.6
4:	\$200m payment	<u>+150.0</u>
		+12.9 @ 10%

2.964: Economics of Marine Transportation Industries Lecture Notes: Time Value of Money