Assembly System Design Techniques

- Goals of this class
- Introduce system design methods
- Understand the things that must be considered
- Look at two ways to approach it
- Learn about SelectEquip

Assembly System Design Techniques

- Assembly system design algorithms exist
- They solve the "Equipment Selection and Task Assignment" problem
- Methods include dynamic programming, travelling salesman, mixed integer-linear programming, and a heuristic called ASDP
- These algorithms will design an assembly or other process line to meet average production requirements, adjusted for a fixed \% uptime
- Detailed simulation is needed to verify production rate and study queues and other issues

What to Model

- The tasks that need to be done
- The number of units needed per year
- What resources are available or applicable to a given task
- What each resource costs to buy
- What tool it needs for each task
- How long it will take to do the task, change tools, etc
- What is its uptime and other operating characteristics
- Time for transport from station to station
- Reuse of a resource for several tasks
- Reuse of tools at one station

History

- Heuristics by R E Gustavson at Draper and N H Cook at MIT in 1970s
- Solutions based on OR techniques by Prof Graves and OR Center students
- Terry Huttner, 1977 - mixed linear-integer programming
- Bruce Lamar, 1979 - bus routing algorithm
- Carol Holmes, 1987 - multiple products, dynamic programming
- Curt Cooprider, 1989 - uncertain demand, dynamic programming
- Holmes-Cooprider method reprogrammed by Mike Hoag, 2001.

System Selection Criteria

- Minimize annualized cost
- = unit labor cost + annualized cost of capital
- Systems can be forced to be all manual, all robot, or all fixed automation just by removing unwanted resource classes
- A wide variety of preferences can be accommodated this way

Summary of Required Input

- Info about assembly resources with cost, operation time, and "rho" or installed cost factor
- rho relates total cost to equipment cost
- Info about assembly tasks with operation time and tool number for each resource
- Annual production volume, labor cost, min acceptable rate of return, number of shifts available
- Rate of return expressed in annualized cost factor

	NAME								
	DATE								
	PREPARED BY								
NOTE: SEE FIG 14.7 OF CONCURRENT DESIGN	SHEET		OF						
PAGE 433									
TASK									
TASK TYPE	INSPECTION								
P = PLACE/ORIENT	B=BOLT TORQUE								
T=TIGHTEN BOLT, SCREW, ETC	G=GAUGE DIMENSION								
I=INSERT PART(S)	C=COMPARISON								
M=MEASURE									
S=MODIFY SHAPE									
A=ALIGN									

Assembly Planning Chart
© Daniel E Whitney

Basic Nominal Capacity Equations

\# operations/unit * \# units/year = \# ops/yr
\# ops/sec $=\#$ ops/yr $*(1 \mathrm{shift} / 28800 \mathrm{sec}) *(1$ day $/ \mathrm{n} \mathrm{shifts}) *(1 \mathrm{yr} / 280$ days $)$
cycle time $=1 /(\mathrm{ops} / \mathrm{sec})=$ required $\mathrm{sec} / \mathrm{op}$
equipment capability $=$ actual sec/op
actual sec/op < required sec/op -> happiness
required sec/op < actual sec/op -> misery (or multiple resources)
Typical cycle times: $3-5 \mathrm{sec}$ manual small parts
5-10 sec small robot
$1-4 \mathrm{sec}$ small fixed automation
$10-60 \mathrm{sec}$ large robot or manual large parts

How the Holmes-Cooprider Method Works

- The maximum takt or cycle time is calculated based on annual volume requirement and \# shifts
- Each resource is tested to see if it can do one task without running out of time, two tasks, three tasks, etc.
- A network is built where pairs of nodes are tasks, and arcs are resources
- Each arc has a cost based on investment, tools, and labor (labor cost based on time used)
- The shortest path through the network is the string of selected resources and the tasks they will do

Network

Network Models of Assembly Systems

- Model of system as flows in a network
- Represents equilibrium state
- Based on probabilities and costs

- Outbound probabilities add to 1.0
- Equilibrium solution gives average cost to go through and average flow on each branch

Equations

$\mathrm{p}_{\mathrm{ij}}=$ pr of going from node i to node j
$\mathrm{c}_{\mathrm{ij}}=$ cost of going from node i to node j
$\mathrm{f}_{\mathrm{ij}}=$ flow from node i to node j
$y_{i}=$ total flow out of node i

$$
f_{i j}=y_{i} p_{i j}
$$

where we must have

Node i Node j

$$
\sum_{j} p_{i j}=1 \text { for each } i
$$

Conservation of flow at node j :

$$
\begin{array}{lll}
y_{j}=y_{j} p_{j j}+\sum_{k . j} y_{k} p_{k j}+x_{j} \longrightarrow & Y=P^{T} Y+X \\
\mathrm{x}_{\mathrm{j}}=\text { flow into node } \mathrm{j} \text { from outside } & \text { Solution: } & Y=\left[I-P^{T}\right]^{-1} X \\
\mathrm{p}_{\mathrm{j} j}=0 & & \text { cost }=\sum_{i} \sum_{j} f_{i j} c_{i j}
\end{array}
$$

Example System: an assembly with two subassemblies and several test and rework stations

Network Equivalent of Example

A Build/repair Subassembly \#1 and Test it
B Build/repair Subassembly \#2 and Test Both
C Repair/rebuild \#1 While Attached to \#2

Matlab Solution

```
        » \(\mathrm{P}=\) zeros(8)
        »C=zeros(8)
            \%Arc probabilities:
        » \(\mathrm{P}(1,2)=1\);
        » \(\mathrm{P}(2,1)=.1\);
        » \(\mathrm{p}(2,3)=.9\);
        » \(\mathrm{P}(2,3)=.9\);
        » \(\mathrm{P}(3,4)=1\);
        » \(\mathrm{P}(4,5)=1\);
        » \(\mathrm{P}(5,3)=.1\);
        » \(\mathrm{P}(5,1)=.002\);
    » \(\mathrm{P}(5,6)=.02\);
\(» P(5,8)=1-\mathrm{P}(5,6)-\mathrm{P}(5,3)-\mathrm{P}(5,1)\);
        \(» P(6,7)=1\);
        » \(\mathrm{P}(7,4)=.9\);
        » \(\mathrm{P}(7,6)=.1\);
    » \(\mathrm{X}=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\) ];
        » \(\mathrm{X}=\mathrm{X}^{\prime}\)

\section*{Equilibrium Flows}
\begin{tabular}{llllllll}
\multicolumn{9}{c}{\(\mathrm{F}=\)} \\
0.0000 & 1.1136 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.1114 & 0.0000 & 1.0023 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 1.1162 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 1.1390 & 0.0000 & 0.0000 & 0.0000 \\
0.0023 & 0.0000 & 0.1139 & 0.0000 & 0.0000 & 0.0228 & 0.0000 & 1.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0253 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0228 & 0.0000 & 0.0025 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000
\end{tabular}

\section*{Cost Solution}
\%Arc costs:
```

 »C(1,2)=11;
 »C(2,1)=40;
 »C(3,4)=20;
 >C(4,5)=2;
 »C(5,1)=50;
 »C(5,3)=10;
 »C(5,3)=10;
 »C(5,6)=80;
 »C(6,7)=11;
 >C(7,6)=40;
 >cost=sum(sum(box(C,F)))
cost =
\$44.7608
Cost without rework = \$33

```
```

