An example of the Transition Equations

Transition equations: $\pi_{i}(t+1)=\sum_{j}{ }_{i j} \pi_{j}(t)$

Transition graph

For node 2 , by total probability theorem, we have

$$
\begin{align*}
P(X(t+1)=2) & =P(X(t+1)=2 \mid X(t)=1) \cdot P(X(t)=1) \\
& +P(X(t+1)=2 \mid X(t)=2) \cdot P(X(t)=2) \\
& +P(X(t+1)=2 \mid X(t)=4) \cdot P(X(t)=4) \tag{1}\\
& +P(X(t+1)=2 \mid X(t)=5) \cdot P(X(t)=5)
\end{align*}
$$

Note the definition of the notation $\pi_{i}(t)=\operatorname{prob}\{X(t)=i\}$, we have

$$
\begin{aligned}
& P(X(t+1)=2)=\pi_{2}(t+1) \\
& P(X(t)=1)=\pi_{1}(t) \\
& P(X(t)=2)=\pi_{2}(t) \\
& P(X(t)=4)=\pi_{4}(t) \\
& P(X(t)=5)=\pi_{5}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
& P(X(t+1)=2 \mid X(t)=1)=P_{21} \\
& P(X(t+1)=2 \mid X(t)=2)=P_{22} \\
& P(X(t+1)=2 \mid X(t)=4)=P_{24} \\
& P(X(t+1)=2 \mid X(t)=5)=P_{25}
\end{aligned}
$$

Thus, Equation 1 is equal to

$$
\pi_{2}(t+1)=P_{21} \pi_{1}(t)+P_{22} \pi_{2}(t)+P_{24} \pi_{4}(t)+P_{25} \pi_{5}(t)
$$

where $P_{22}=1-P_{52}$.

MIT OpenCourseWare
https://ocw.mit.edu

2.854 / 2.853 Introduction To Manufacturing Systems

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

