MIT 2.853/2.854

Introduction to Manufacturing Systems

Single-part-type, multiple stage systems

Stanley B. Gershwin Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology

Flow Lines

... also known as a Production or Transfer Line.

- Machines are unreliable.
- Buffers are finite.
- In many cases, the operation times are constant and equal for all machines.

Output Variability

Flow Lines Output Variability

Reliable Machines Single Reliable Machine

- If the machine is perfectly reliable, and its average operation time is τ , then its maximum production rate is $\mu = 1/\tau$.
- Note:
 - * Sometimes *cycle time* is used instead of *operation time*, but *BEWARE*: cycle time has two meanings!
 - The other meaning is the time a part spends in a system. If the system is a single, reliable machine, the two meanings are the same.

Two Reliable Machines

Reliable Machines

Two Reliable Machines

(Prime to be explained later.)

Two Reliable Machines

Reliable Machines

Reliable Machines

Single Unreliable Machine Failures and Repairs

- Machine is either *up* or *down* .
- MTTF = mean time to fail.
- MTTR = mean time to repair
- MTBF = MTTF + MTTR

Single Unreliable Machine Production rate

- If the machine is unreliable, and
 - $\star\,$ its average operation time is τ ,
 - \star its mean time to fail is MTTF,
 - * its mean time to repair is MTTR,

then its maximum production rate is

$$\frac{1}{\tau} \left(\frac{\mathsf{MTTF}}{\mathsf{MTTF} + \mathsf{MTTR}} \right)$$

Single Unreliable Machine Proof

- Average production rate, while machine is up, is $1/\tau$.
- Average duration of an up period is MTTF.
- Average production during an up period is $MTTF/\tau$.
- Average duration of up-down period: MTTF + MTTR.
- Average production during up-down period: $MTTF/\tau$.
- Therefore, average production rate is $(MTTF/\tau)/(MTTF + MTTR)$.

Single Unreliable Machine Geometric Up- and Down-Times

- Assumptions: Operation time is constant (τ). Failure and repair times are geometrically distributed.
- Let p be the probability that a machine fails during any given operation. Then $p = \tau/\text{MTTF}$.

Single Unreliable Machine Geometric Up- and Down-Times

- Let r be the probability that M gets repaired during any operation time when it is down. Then $r = \tau/\text{MTTR}$.
- Then the average production rate of \boldsymbol{M} is

$$\frac{1}{\tau} \left(\frac{r}{r+p} \right).$$

• (Sometimes we forget to say "average.")

Single Unreliable Machine Production Rates

- So far, the machine really has *three* production rates:
 - $\star 1/\tau$ when it is up *(short-term capacity)*,
 - * 0 when it is down *(short-term capacity)*,
 - $\star~(1/\tau)(r/(r+p))$ on the average (long-term capacity) .

Single Unreliable Machine ODFs

- Operation-Dependent Failures
 - $\star\,$ A machine can only fail while it is working not idle.
 - * (When buffers are finite, idleness also occurs due to blockage.)
 - * *IMPORTANT*! MTTF *must* be measured in working time!
 - \star This is the usual assumption.

Infinite-Buffer Lines

$$\rightarrow \underbrace{M_1} \rightarrow \underbrace{M_2} \rightarrow \underbrace{M_2} \rightarrow \underbrace{M_3} \rightarrow \underbrace{M_3} \rightarrow \underbrace{M_4} \rightarrow \underbrace{M_5} \rightarrow \underbrace{M_5} \rightarrow \underbrace{M_6} \rightarrow$$

• Starvation: Machine M_i is starved at time t if Buffer B_{i-1} is empty at time t.

Assumptions:

- A machine is not idle if it is not starved.
- The first machine is never starved.

Infinite-Buffer Lines Bottleneck

 $\rightarrow \boxed{M_1} \rightarrow \boxed{M_2} \rightarrow \boxed{M_2} \rightarrow \boxed{M_3} \rightarrow \boxed{M_3} \rightarrow \boxed{M_4} \rightarrow \boxed{M_4} \rightarrow \boxed{M_5} \rightarrow \boxed{M_5} \rightarrow \boxed{M_6} \rightarrow$

- The production rate of the line is the production rate of the *slowest* machine in the line called the *bottleneck* .
- Slowest means *least average production rate*, where average production rate is calculated from one of the previous formulas.

Infinite-Buffer Lines Bottleneck

 $\rightarrow \underbrace{M_1} \rightarrow \underbrace{M_2} \rightarrow \underbrace{M_2} \rightarrow \underbrace{M_3} \rightarrow \underbrace{M_3} \rightarrow \underbrace{M_4} \rightarrow \underbrace{M_5} \rightarrow \underbrace{M_5} \rightarrow \underbrace{M_6} \rightarrow$

• Production rate is therefore

$$P = \min_{i} \frac{1}{\tau_i} \left(\frac{\mathsf{MTTF}_i}{\mathsf{MTTF}_i + \mathsf{MTTR}_i} \right)$$

• and M_i is the bottleneck.

Single-part-type, multiple stage systems

Infinite-Buffer Lines Bottleneck

 $\rightarrow \underbrace{M_1} \rightarrow \underbrace{B_2} \rightarrow \underbrace{M_2} \rightarrow \underbrace{M_3} \rightarrow \underbrace{M_3} \rightarrow \underbrace{M_4} \rightarrow \underbrace{B_4} \rightarrow \underbrace{M_5} \rightarrow \underbrace{M_6} \rightarrow$

- The system is not in steady state.
- An increasing amount of inventory accumulates in the buffer upstream of the bottleneck.
- A finite amount of inventory appears downstream of the bottleneck.

 $+\underbrace{M_{1}}_{H_{1}}+\underbrace{B_{2}}_{H_{2}}+\underbrace{M_{2}}_{H_{2}}+\underbrace{B_{3}}_{H_{3}}+\underbrace{M_{4}}_{H_{3}}+\underbrace{B_{3}}_{H_{3}}+\underbrace{M_{5}}_{H_{3}}+\underbrace{M_{6}}_{H_{3}}+\underbrace{M_{5}}_{H_{3}}+\underbrace{M_{6}}+\underbrace{M_{6}}+\underbrace{M_{6}}+\underbrace{M_{6}}+\underbrace{M_{6}}+\underbrace{M_{6}}+$

• Parameters:

 $r_i = .1, p_i = .01, i = 1, ..., 9; r_{10} = .1, p_{10} = .03.$

• Therefore, $e_i = .909, i = 1, ..., 9; e_{10} = .769.$

Single-part-type, multiple stage systems

Copyright ©2016 Stanley B. Gershwin.

-+ M₁ + (B) + M₂ + (B) + M₃ + (B) + M₄ + (B) + M₅ + (B) + M₅ + (B) + M₇ + (B) + (M₅ + (B) + M₉) + (B) + (M₉ + (B) + (M₉) + (B) + (M_9) + (M_

Single-part-type, multiple stage systems

Copyright ©2016 Stanley B. Gershwin.

• Estimate the rate of growth of $n_9(t)$, the inventory in B_9 .

Second Bottleneck

Infinite-Buffer Lines Second Bottleneck

 $-+M_{1}+(B_{1})+(M_{2})+(B_{2})+(M_{3})+(B_{3})+(M_{4}+(B_{4})+(M_{5})+(B_{5})+(M_{6})+(B_{5})+(M_{7})+(B_{7})+(M_{8})+(B_{6})+(M_{9})+(B_{9})+(M_{1})+(B_{1})+(B_{1$

- The second bottleneck is the slowest machine upstream of the bottleneck. An increasing amount of inventory accumulates just upstream of it.
- A finite amount of inventory appears between the second bottleneck and the machine upstream of the first bottleneck
- A finite amount of inventory appears downstream of the first bottleneck.

Second Bottleneck

Infinite-Buffer Lines Example 2

 $+ (M_1 | - (B_1) - (M_2 | - (B_2) - (M_3 | - (B_3) - (M_4 | - (B_4) - (M_5 | - (B_5) - (M_6 | - (B_5) - (M_7 | - (B_7) - (M_8 | - (B_5) - (M_8 | -$

- Parameters: $r_i = .1, p_i = .01, i = 1, ..., 4, 6, ..., 9;$ $r_5 = .1, p_5 = .02, r_{10} = .1, p_{10} = .03.$
- Therefore, $e_i = .909, i = 1, ..., 4, 6, ..., 9$; $e_5 = .833, e_{10} = .769.$

-+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,+<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,}+B,-M,]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,}+B,-M,]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,}+B,-M,]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,}+B,-M,]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,}+B,-M,]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,}+B,-M,]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,</u>]+B,-<u>M,}+B,-M,]+B,-M,]+B,-M,]+B,-M,]+B,-M,]+B,-M,]+B,-M,-M,]+B,-M,-M,+M,-M,{M,}+M,-M,{M,}+M,{M,}+M,-M,{M,}+M,{M,}+M,-M,-M,{M,}+M,-M,-M,{M,}+M,{M,}+M,-M,-M,-M,{M,}+M,-M,{M,}+M,-M,-M,-M,-M,-M,-M,-M,-</u></u></u></u></u></u></u>

Single-part-type, multiple stage systems

• Estimate the rates of growth of $n_4(t)$ and $n_9(t)$.

• Note that when t is large enough, $n_4(t) > n_9(t)$.

• Manufacturing people sometimes say that the easiest way to find the bottleneck of a line is to look for the greatest accumulation of inventory. *Is that correct?*

Second Bottleneck

Infinite-Buffer Lines

Improvements

Questions:

- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

Simulation Note

- The simulations shown here were *time-based* rather than *event-based* .
- Time-based simulations are easier to program, but less general, less accurate, and slower, than event-based simulations.
- Primarily for systems where all event times are geometrically distributed.

Simulation Note

Assume that some event occurs according to a geometric probability distribution and it has a mean time to occur of T time steps. Then the probability that it occurs in any time step is 1/T.

- At each time step , choose a U[0,1] random number.
- If the number is less than or equal to 1/T, the event has occurred. Change the state accordingly.
- If the number is greater than 1/T, the event has not occurred. Change the state accordingly.

Single-part-type, multiple stage systems

Zero-Buffer Lines

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

- If any one machine fails, or takes a very long time to do an operation, *all* the other machines must wait.
- Therefore the production rate is usually less possibly much less than the slowest machine.

Zero-Buffer Lines

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

• *Example:* Constant, unequal operation times, perfectly reliable machines.

 The operation time of the line is equal to the operation time of the slowest machine, so the production rate of the line is *equal to* that of the slowest machine.

Zero-Buffer Lines Constant, equal operation times, unreliable machines

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

- Assumption: Failure and repair times are geometrically distributed.
- Define $p_i = \tau / \mathsf{MTTF}_i$ = probability of failure during an operation.
- Define $r_i = \tau / \text{MTTR}_i$ probability of repair during an interval of length τ when the machine is down.

Zero-Buffer Lines Production Rate

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

Buzacott's Zero-Buffer Line Formula:

Let k be the number of machines in the line. Then

$$P = \frac{1}{\tau} \frac{1}{1 + \sum_{i=1}^{k} \frac{p_i}{r_i}}$$

Single-part-type, multiple stage systems

Zero-Buffer Lines Production Rate

$$\rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow M_4 \rightarrow M_5 \rightarrow M_6 \rightarrow$$

 Same as the earlier formula (Slides 9 and 12) when k = 1. The *isolated production rate* of a <u>single</u> machine M_i is

$$\frac{1}{\tau} \left(\frac{1}{1 + \frac{p_i}{r_i}} \right) = \frac{1}{\tau} \left(\frac{r_i}{r_i + p_i} \right).$$

Zero-Buffer Lines Proof of formula

- Let τ (the operation time) be the time unit.
- *Approximation:* At most, <u>one</u> machine can be down.
- Consider a long time interval of length $T\tau$ during which Machine M_i fails m_i times (i = 1, ..., k).
- Without failures, the line would produce T parts.

Zero-Buffer Lines Proof of formula

• The average repair time of M_i is τ/r_i each time it fails, so the total system down time is close to

$$D\tau = \sum_{i=1}^{k} \frac{m_i \tau}{r_i}$$

where D is the number of operation times in which a machine is down.
Zero-Buffer Lines Proof of formula

• The total up time is approximately

$$U\tau = T\tau - \sum_{i=1}^{k} \frac{m_i \tau}{r_i}$$

• where U is the number of operation times in which all machines are up.

Zero-Buffer Lines Proof of formula

- Since the system produces one part per time unit while it is working, it produces U parts during the interval of length $T\tau$.
- Note that, approximately,

$$m_i = p_i U$$

because M_i can only fail while it is operational.

Geometric Failures and Repa

Zero-Buffer Lines Proof of formula

• Thus,

or,

$$\frac{U}{T} = E_{ODF} = \frac{1}{1 + \sum_{i=1}^{k} \frac{p_i}{r_i}}$$

Zero-Buffer Lines p_i and r_i and p_i/r_i

 ${\rm and}$

$$P = \frac{1}{\tau} \frac{1}{1 + \sum_{i=1}^{k} \frac{p_i}{r_i}}$$

- Note that P is a function of the *ratio* p_i/r_i and not p_i or r_i separately.
- The same statement is true for the infinite-buffer line.
- However, the same statement is *not* true for a line with finite, non-zero buffers.

Zero-Buffer Lines

Improvements

Questions:

- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

Zero-Buffer Lines P as a function of p_i

All machines are the same except M_i . As p_i increases, the production rate decreases.

Single-part-type, multiple stage systems

Zero-Buffer Lines P as a function of p_i

All machines are the same. As the line gets longer, the production rate decreases.

Finite-Buffer Lines

$\rightarrow \underbrace{M_1} + \underbrace{B_1} + \underbrace{M_2} + \underbrace{B_2} + \underbrace{M_3} + \underbrace{B_3} + \underbrace{M_4} + \underbrace{B_4} + \underbrace{M_5} + \underbrace{M_5} + \underbrace{M_6} +$

- Motivation for buffers: recapture some of the lost production rate.
- Cost
 - \star in-process inventory/lead time
 - \star floor space
 - * material handling mechanism

Finite-Buffer Lines

$$\rightarrow \underbrace{M_1} \rightarrow \underbrace{B_2} \rightarrow \underbrace{M_2} \rightarrow \underbrace{M_3} \rightarrow \underbrace{B_3} \rightarrow \underbrace{M_4} \rightarrow \underbrace{B_4} \rightarrow \underbrace{M_5} \rightarrow \underbrace{M_6} \rightarrow$$

- Infinite buffers: delayed downstream propagation of disruptions(*starvation*) and *no* upstream propagation.
- Zero buffers: instantaneous propagation in both directions.
- Finite buffers: delayed propagation in both directions.
 - * New phenomenon: *blockage*.
- Blockage: Machine M_i is blocked at time t if Buffer B_i is full at time t.

Finite-Buffer Lines

$\rightarrow \underbrace{\textbf{M}_{f}}_{} \rightarrow \underbrace{\textbf{R}_{2}}_{} \rightarrow \underbrace{\textbf{M}_{2}}_{} \rightarrow \underbrace{\textbf{R}_{2}}_{} \rightarrow \underbrace{\textbf{M}_{3}}_{} \rightarrow \underbrace{\textbf{R}_{3}}_{} \rightarrow \underbrace{\textbf{M}_{4}}_{} \rightarrow \underbrace{\textbf{R}_{3}}_{} \rightarrow \underbrace{\textbf{M}_{5}}_{} \rightarrow \underbrace{\textbf{R}_{5}}_{} \rightarrow \underbrace{\textbf{M}_{6}}_{} \rightarrow \underbrace{\textbf{R}_{5}}_{} \rightarrow \underbrace{\textbf{R}_{5}}_{ \rightarrow } \xrightarrow{\textbf{R}_{5}}_{ \rightarrow } \underbrace{\textbf{R}_{5}}_{ \rightarrow }$

- Difficulty:
 - $\star\,$ No simple formula for calculating production rate or inventory levels.
- Solution:
 - \star Simulation
 - * Analytical approximation
 - * Exact analytical solution for two-machine lines only.

Single-part-type, multiple stage systems

- Exact solution *is* available to Markov process model of a two-machine line.
- Discrete time-discrete state Markov process:

$$prob\{X(t+1) = x(t+1) | X(t) = x(t), X(t-1) = x(t-1), X(t-2) = x(t-2), ...\} =$$

$$\mathsf{prob}\{X(t+1) = x(t+1) | X(t) = x(t)\}$$

Two Machine, Finite-Buffer Lines State Space

Here, $X(t) = (n(t), \alpha_1(t), \alpha_2(t))$, where

- n is the number of parts in the buffer; n = 0, 1, ..., N.
- α_i is the repair state of M_i ; i = 1, 2.

 $\star \alpha_i = 1$ means the machine is *up* or *operational*;

 $\star \alpha_i = 0$ means the machine is *down* or *under repair*.

Two Machine, Finite-Buffer Lines Simulations

Single-part-type, multiple stage systems

Two Machine, Finite-Buffer Lines Simulations

Single-part-type, multiple stage systems

Two Machine, Finite-Buffer Lines Simulations

Single-part-type, multiple stage systems

Copyright ©2016 Stanley B. Gershwin.

Two Machine, Finite-Buffer Lines Simulations

Single-part-type, multiple stage systems

Several models available:

• Deterministic processing time, or Buzacott model: deterministic processing time, geometric failure and repair times; discrete state, discrete time.

State Transition Graph for Deterministic Processing Time, Two-Machine Line

• *Exponential processing time:* exponential processing, failure, and repair time; discrete state, continuous time.

• *Continuous material,* or *fluid:* deterministic processing, exponential failure and repair time; mixed state, continuous time.

Single-part-type, multiple stage systems

Discussion:

- What is P when N = 0?
- Why are the curves increasing?
- Why do they reach an asymptote?
- What is the limit of P as $N \to \infty$?
- Why are the curves with smaller r_1 lower?

Discussion:

- Why are the curves increasing?
- Why different asymptotes?
- What is \bar{n} when N = 0?
- What is the limit of \bar{n} as $N \to \infty$?
- Why are the curves with smaller r_1 lower?

Problem: Select M_1 and N to maximize profit (revenue-[capital cost+inventory cost])

- What can you say (qualitatively) about the optimal buffer size for a given M_1 ?
- How should it be related to r_i , p_i ?

Line Design

Problem: Select M_1 and N so that P = .88 and profit is maximized

• Observation: If M_1 is better, N can be smaller.

Single-part-type, multiple stage systems

Should we prefer short, frequent, disruptions or long, infrequent, disruptions?

- $r_2 = 0.8, p_2 = 0.09, N = 10$
- r_1 and p_1 vary together and $\frac{r_1}{r_1+p_1} = .9$
- *Answer:* evidently, short, frequent failures.
- Why?

Two Machine, Finite-Buffer Lines Improvements

Questions:

- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

Improvements to *non-bottleneck* machine.

- Inventory increases as the (non-bottleneck) upstream machine is improved and as the buffer space is increased.
- If the downstream machine were improved, the inventory would be less and it would increase much less as the space increases.

Exponential — discrete material, continuous time

- $\mu_i \delta t$ = the probability that M_i completes an operation in $(t, t + \delta t)$;
- $p_i \delta t$ = the probability that M_i fails during an operation in $(t, t + \delta t)$;
- $r_i \delta t$ = the probability that M_i is repaired, while it is down, in $(t, t + \delta t)$;

Continuous — continuous material, continuous time

- $\mu_i \delta t$ = the amount of material that M_i processes, while it is up, in $(t, t + \delta t)$;
- $p_i \delta t$ = the probability that M_i fails, while it is up, in $(t, t + \delta t)$;
- $r_i \delta t$ = the probability that M_i is repaired, while it is down, in $(t, t + \delta t)$;

- $r_1 = 0.09, p_1 = 0.01, \mu_1 = 1.1$
- $r_2 = 0.08, p_2 = 0.009$
- *N* = 20
- Explain the shapes of the graphs.

Exponential and Continuous Two-Machine Lines

• Explain the shapes of the graphs.

No-variability limit: a continuous model where both machines are reliable, and processing rate μ'_i of machine *i* in the no-variability is the same as the isolated production rate of machine *i* in the other cases. That is, $\mu'_i = \mu_i r_i / (r_i + p_i)$.

Long Lines

- Difficulty:
 - No simple formula for calculating production rate or inventory levels.
 - $\star\,$ State space is too large for exact numerical solution.
 - ▶ If all buffer sizes are N and the length of the line is k, the number of states is $S = 2^k (N+1)^{k-1}$.
 - if N = 10 and k = 20, $S = 6.41 \times 10^{25}$.
 - * *Decomposition* seems to work successfully.

Decomposition

- Decomposition breaks up systems and then reunites them.
- Conceptually: put an observer in a buffer, and tell him that he is in the buffer of a two-machine line.
- Question: What would the observer see, and how can he be convinced he is in a two-machine line? <u>Construct</u> the two-machine line. Construct all the two-machine lines.

Decomposition

- Consider an observer in Buffer B_i .
 - Imagine the material flow process that the observer sees entering and the material flow process that the observer sees *leaving* the buffer.
- We construct a two-machine line L(i)

 \star ie, we find machines $M_u(i)$ and $M_d(i)$ with parameters $r_u(i),\ p_u(i),\ r_d(i),\ p_d(i),\ and\ N(i)=N_i)$

such that an observer in its buffer will see almost the same processes.

• The parameters are chosen as functions of the behaviors of the *other* two-machine lines.
Decomposition

Decomposition

Decomposition

There are 4(k-1) unknowns. Therefore, we need

•
$$4(k-1)$$
 equations, and

• an algorithm for solving those equations.

Decomposition Equations

- *Conservation of flow,* equating all production rates.
- *Flow rate/idle time,* relating production rate to probabilities of starvation and blockage.
- Resumption of flow, relating $r_u(i)$ to upstream events and $r_d(i)$ to downstream events.
- Boundary conditions, for parameters of $M_u(1)$ and $M_d(k-1)$.

Decomposition Equations

- This is a set of 4(k-1) equations.
- All the quantities in these equations are
 - * specified parameters, or
 - ★ unknowns, or
 - functions of parameters or unknowns derived from the two-machine line analysis.

Algorithm

Decomposition Algorithm

DDX algorithm : due to Dallery, David, and Xie (1988).

- 1. Guess the downstream parameters of L(1) $(r_d(1), p_d(1))$. Set i = 2.
- 2. Use the equations to obtain the upstream parameters of L(i) $(r_u(i), p_u(i))$. Increment *i*.
- 3. Continue in this way until L(k-1). Set i = k-2.
- 4. Use the equations to obtain the downstream parameters of L(i). Decrement i.
- 5. Continue in this way until L(1).
- 6. Go to Step 2 or terminate.

Examples

Three-machine line – production rate.

Single-part-type, multiple stage systems

Examples

Examples

Single-part-type, multiple stage systems

Examples

Continuous material model.

- Eight-machine, seven-buffer line.
- For each machine, *r* = .075, *p* = .009, μ = 1.2.
- For each buffer *(except Buffer 6),* N = 30.

Examples

Which has a higher production rate?

- 9-Machine line with two buffering options:
 - \star 8 buffers equally sized; or

 $+\underbrace{M_1}+\underbrace{R_2}+\underbrace{M_2}+\underbrace{R_3}+\underbrace{M_3}+\underbrace{R_3}+\underbrace{M_4}+\underbrace{R_4}+\underbrace{M_5}+\underbrace{R_5}+\underbrace{M_6}+\underbrace{R_5}+\underbrace{M_7}+\underbrace{R_7}+\underbrace{R_7}+\underbrace{R_8}+\underbrace{R_8}+\underbrace{M_9}+\underbrace{M_9}+\underbrace{R_9}$

 \star 2 buffers equally sized.

$$\rightarrow \underbrace{M_{7}}_{} + \underbrace{M_{2}}_{} \rightarrow \underbrace{M_{3}}_{} \rightarrow \underbrace{M_{3}}_{} \rightarrow \underbrace{M_{4}}_{} + \underbrace{M_{5}}_{} + \underbrace{M_{6}}_{} \rightarrow \underbrace{M_{7}}_{} + \underbrace{M_{7}}_{} + \underbrace{M_{9}}_{} + \underbrace{M_{9}}_{} \rightarrow \underbrace{M_{7}}_{} + \underbrace{M_{9}}_{} + \underbrace{M_{9}}_{} \rightarrow \underbrace{M_{7}}_{} + \underbrace{M_{9}}_{} + \underbrace{M_{9}}_{} + \underbrace{M_{9}}_{} \rightarrow \underbrace{M_{9}}_{} + \underbrace{M_{9}}_{}$$

Examples

- Design the buffers for a 20-machine production line.
- The machines have been selected, and the only decision remaining is the amount of space to allocate for in-process inventory.
- The goal is to determine the smallest amount of in-process inventory space so that the line meets a production rate target.

• The common operation time is one operation per minute.

• The target production rate is .88 parts per minute.

- Case 1 MTTF= 200 minutes and MTTR = 10.5 minutes for all machines (P = .95 parts per minute).
- Case 2 Like Case 1 except Machine 5. For Machine 5, MTTF = 100 and MTTR = 10.5 minutes (P = .905 parts per minute).
- Case 3 Like Case 1 except Machine 5. For Machine 5, MTTF = 200 and MTTR = 21 minutes (P = .905 parts per minute).

Are buffers really needed?

Line	Production rate with no buffers,
	parts per minute
Case 1	.487
Case 2	.475
Case 3	.475

Yes.

How were these numbers calculated?

Solution

Observation from studying buffer space allocation problems:

* Buffer space is needed most where buffer level variability is greatest!

Profit as a function of buffer sizes

• Three-machine, continuous material line.

•
$$r_i = .1$$
, $p_i = .01$, $\mu_i = 1$.

•
$$\Pi = 1000P(N_1, N_2) - (\bar{n}_1 + \bar{n}_2).$$

- Decomposition can be extended to assembly systems.
- Propagation of disturbances is more complex:

Question: How should an assembly system be structured?

• Add parts to a growing assembly *or* form subassemblies and then assemble them?

• Production rates are roughly the same, but inventories can be affected.

Assembly

Schick/Gershwin 4

38

Single-part-type, multiple stage systems

Copyright ©2016 Stanley B. Gershwin.

Assembly

Assembly

Schick/Gershwin 4

41

Single-part-type, multiple stage systems

Copyright ©2016 Stanley B. Gershwin.

Assembly

Single-part-type, multiple stage systems

Copyright ©2016 Stanley B. Gershwin.

Assembly

MIT OpenCourseWare https://ocw.mit.edu

$\begin{array}{l} \textbf{2.854 / 2.853 Introduction To Manufacturing Systems} \\ \textbf{Fall 2016} \end{array}$

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.