MIT 2.853/2.854

Introduction to Manufacturing Systems

Markov Processes and Queues

Stanley B. Gershwin

Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology

Stochastic processes

- t is time.
- $X()$ is a stochastic process if $X(t)$ is a random variable for every t.
- t is a scalar - it can be discrete or continuous.
- $X(t)$ can be discrete or continuous, scalar or vector.

Stochastic processes

Markov processes

- A Markov process is a stochastic process in which the probability of finding X at some value at time $t+\delta t$ depends only on the value of X at time t.
- Or, let $x(s), s \leq t$, be the history of the values of X before time t and let A be a possible value of X. Then
$P\{X(t+\delta t)=A \mid X(s)=x(s), s \leq t\}=$
$P\{X(t+\delta t)=A \mid X(t)=x(t)\}$

Stochastic processes Markov processes

- In words: if we know what X was at time t, we don't gain any more useful information about $X(t+\delta t)$ by also knowing what X was at any time earlier than t.
- This is the definition of a class of mathematical models. It is NOT a statement about reality!! That is, not everything is a Markov process.

Markov processes Example

Transition graph

- I have $\$ 100$ at time $t=0$.
- At every time $t \geq 1$, I have $\$ N(t)$.
* A (possibly biased) coin is flipped.
* If it lands with H showing, $N(t+1)=N(t)+1$.
* If it lands with T showing, $N(t+1)=N(t)-1$.
$N(t)$ is a Markov process. Why?

Discrete state, discrete time States and transitions

- States can be numbered $0,1,2,3, \ldots$ (or with multiple indices if that is more convenient).
- Time can be numbered $0,1,2,3, \ldots$ (or $0, \Delta, 2 \Delta$, $3 \Delta, \ldots$ if more convenient).
- The probability of a transition from j to i in one time unit is often written $P_{i j}$, where

$$
P_{i j}=P\{X(t+1)=i \mid X(t)=j\}
$$

States and transitions Transition graph

Transition graph

$P_{i j}$ is a probability. Note that $P_{i i}=1-\sum_{m, m \neq i} P_{m i}$.

States and transitions Transition graph

Example: $H(t)$ is the number of Hs after t coin flips. Assume probability of H is p.

States and transitions Transition graph

Example: Coin flip bets on Slide 5.
Assume probability of H is p.

Markov processes Notation

- $\{X(t)=i\}$ is the event that random quantity $X(t)$ has value i.
* Example: $X(t)$ is any state in the graph on slide 7. i is a particular state.
- Define $\pi_{i}(t)=P\{X(t)=i\}$.
- Normalization equation: $\sum_{i} \pi_{i}(t)=1$.

Markov processes Transition equations

Transition equations: application of the law of total probability.

on slide 7.)

Markov processes Transition equations

$$
\begin{aligned}
P\{X(t+1) & =2\} \\
& =P\{X(t+1)=2 \mid X(t)=1\} P\{X(t)=1\} \\
& +P\{X(t+1)=2 \mid X(t)=2\} P\{X(t)=2\} \\
& +P\{X(t+1)=2 \mid X(t)=4\} P\{X(t)=4\} \\
& +P\{X(t+1)=2 \mid X(t)=5\} P\{X(t)=5\}
\end{aligned}
$$

Markov processes Transition equations

- Define $P_{i j}=P\{X(t+1)=i \mid X(t)=j\}$
- Transition equations: $\pi_{i}(t+1)=\sum_{j} P_{i j} \pi_{j}(t)$. (Law of Total Probability)
- Normalization equation: $\sum_{i} \pi_{i}(t)=1$.

Markov processes Transition equations

Therefore, since
$P_{i j}=P\{X(t+1)=i \mid X(t)=j\}$
$\pi_{i}(t)=P\{X(t)=i\}$,
$\pi_{2}(t+1)=P_{21} \pi_{1}(t)+P_{22} \pi_{2}(t)+P_{24} \pi_{4}(t)+P_{25} \pi_{5}(t)$
Note that $P_{22}=1-P_{52}$.

Markov processes

 Transition equations - Matrix-Vector FormFor an n-state system,

- Define

$$
\pi(t)=\left[\begin{array}{c}
\pi_{1}(t) \\
\pi_{2}(t) \\
\ldots \\
\pi_{n}(t)
\end{array}\right], \quad P=\left[\begin{array}{cccc}
P_{11} & P_{12} & \ldots & P_{1 n} \\
P_{21} & P_{22} & \ldots & P_{2 n} \\
& & \ldots & \\
P_{n 1} & P_{n 2} & \ldots & P_{n n}
\end{array}\right], \quad \nu=\left[\begin{array}{c}
1 \\
1 \\
\ldots \\
1
\end{array}\right]
$$

- Transition equations: $\pi(t+1)=P \pi(t)$
- Normalization equation: $\nu^{T} \pi(t)=1$
- Other facts:

$$
\begin{aligned}
& \star \nu^{T} P=\nu^{T}(\text { Each column of } P \text { sums to } 1 .) \\
& \star \pi(t)=P^{t} \pi(0)
\end{aligned}
$$

Markov processes Steady state

- Steady state: $\pi_{i}=\lim _{t \rightarrow \infty} \pi_{i}(t)$, if it exists.
- Steady-state transition equations: $\pi_{i}=\sum_{j} P_{i j} \pi_{j}$.
- Alternatively, steady-state balance equations: $\pi_{i} \sum_{m, m \neq i} P_{m i}=\sum_{j, j \neq i} P_{i j} \pi_{j}$
- Normalization equation: $\sum_{i} \pi_{i}=1$.

Markov processes Steady state - Matrix-Vector Form

- Steady state: $\pi=\lim _{t \rightarrow \infty} \pi(t)$, if it exists.
- Steady-state transition equations: $\pi=P \pi$.
- Normalization equation: $\nu^{T} \pi=1$.
- Fact:

$$
\star \pi=\lim _{t \rightarrow \infty}=P^{t} \pi(0) \text {, if it exists. }
$$

Markov processes
 Balance equations

Balance equation:

$$
\begin{aligned}
& \pi_{4}\left(P_{14}+P_{24}+P_{64}\right) \\
& \quad=\pi_{5} P_{45}
\end{aligned}
$$

in steady state only.

Intuitive meaning: The average number of transitions into the circle per unit time equals the average number of transitions out of the circle per unit time.

Markov processes Geometric distribution

Consider a two-state system. The system can go from 1 to 0 , but not from 0 to 1.

Let p be the conditional probability that the system is in state 0 at time $t+1$, given that it is in state 1 at time t. Then

$$
p=P[\alpha(t+1)=0 \mid \alpha(t)=1] .
$$

Markov processes

Geometric distribution - Transition equations

Let $\pi(\alpha, t)$ be the probability of being in state α at time t. Then, since

$$
\begin{aligned}
\pi(0, t+1) & =P[\alpha(t+1)=0 \mid \alpha(t)=1] P[\alpha(t)=1] \\
& +P[\alpha(t+1)=0 \mid \alpha(t)=0] P[\alpha(t)=0]
\end{aligned}
$$

we have

$$
\begin{aligned}
\pi(0, t+1) & =p \pi(1, t)+\pi(0, t), \\
\pi(1, t+1) & =(1-p) \pi(1, t),
\end{aligned}
$$

and the normalization equation

$$
\pi(1, t)+\pi(0, t)=1
$$

Markov processes Geometric distribution - transient probability distribution

Assume that $\pi(1,0)=1$. Then the solution is

$$
\begin{aligned}
& \pi(0, t)=1-(1-p)^{t} \\
& \pi(1, t)=(1-p)^{t}
\end{aligned}
$$

Markov processes Geometric distribution - transient probability distribution

Geometric Distribution

Markov processes

Unreliable machine

$1=$ up; $0=$ down.

Markov processes Unreliable machine - transient probability distribution

The probability distribution satisfies

$$
\begin{aligned}
& \pi(0, t+1)=\pi(0, t)(1-r)+\pi(1, t) p \\
& \pi(1, t+1)=\pi(0, t) r+\pi(1, t)(1-p)
\end{aligned}
$$

Markov processes Unreliable machine - transient probability distribution

It is not hard to show that

$$
\begin{aligned}
\pi(0, t)= & \pi(0,0)(1-p-r)^{t} \\
& +\frac{p}{r+p}\left[1-(1-p-r)^{t}\right], \\
\pi(1, t)= & \pi(1,0)(1-p-r)^{t} \\
& +\frac{r}{r+p}\left[1-(1-p-r)^{t}\right] .
\end{aligned}
$$

Markov processes Unreliable machine - transient probability distribution

Discrete Time Unreliable Machine

Markov processes

Unreliable machine - steady-state probability distribution

As $t \rightarrow \infty$,

$$
\begin{aligned}
\pi(0, t) & \rightarrow \frac{p}{r+p} \\
\pi(1, t) & \rightarrow \frac{r}{r+p}
\end{aligned}
$$

which is the solution of

$$
\begin{aligned}
& \pi(0)=\pi(0)(1-r)+\pi(1) p \\
& \pi(1)=\pi(0) r+\pi(1)(1-p)
\end{aligned}
$$

Markov processes Unreliable machine - efficiency

If a machine makes one part per time unit when it is operational, its average production rate is

$$
\pi(1)=\frac{r}{r+p}
$$

This quantity is the efficiency of the machine.
If the machine makes one part per τ time units when it is operational, its average production rate is

$$
P=\frac{1}{\tau}\left(\frac{r}{r+p}\right)
$$

Discrete state, continuous time States and transitions

- States can be numbered $0,1,2,3, \ldots$ (or with multiple indices if that is more convenient).
- Time is a real number, defined on $(-\infty, \infty)$ or a smaller interval.
- The probability of a transition from j to i during [$t, t+\delta t]$ is approximately $\lambda_{i j} \delta t$, where δt is small, and

$$
\lambda_{i j} \delta t \approx P\{X(t+\delta t)=i \mid X(t)=j\} \text { for } i \neq j
$$

Discrete state, continuous time States and transitions

More precisely,

$$
\begin{gathered}
\lambda_{i j} \delta t=P\{X(t+\delta t)=i \mid X(t)=j\}+o(\delta t) \\
\quad \text { for } i \neq j
\end{gathered}
$$

where $o(\delta t)$ is a function that satisfies $\lim _{\delta t \rightarrow 0} \frac{o(\delta t)}{\delta t}=0$
This implies that for small $\delta t, o(\delta t) \ll \delta t$.

Discrete state, continuous time States and transitions

Transition graph

$\lambda_{i j}$ is a probability rate. $\lambda_{i j} \delta t$ is a probability.
Compare with the discrete-time graph.

Discrete state, continuous time States and transitions

One of the transition equations:
Define $\pi_{i}(t)=P\{X(t)=i\}$. Then for δt small,

$$
\pi_{5}(t+\delta t) \approx
$$

$$
\left(1-\lambda_{25} \delta t-\lambda_{45} \delta t-\lambda_{65} \delta t\right) \pi_{5}(t)+
$$

$$
\lambda_{52} \delta t \pi_{2}(t)+\lambda_{53} \delta t \pi_{3}(t)+\lambda_{56} \delta t \pi_{6}(t)+\lambda_{57} \delta t \pi_{7}(t)
$$

Discrete state, continuous time States and transitions

Or,

$$
\begin{gathered}
\pi_{5}(t+\delta t) \approx \\
\pi_{5}(t)-\left(\lambda_{25}+\lambda_{45}+\lambda_{65}\right) \pi_{5}(t) \delta t
\end{gathered}
$$

$$
+\left(\lambda_{52} \pi_{2}(t)+\lambda_{53} \pi_{3}(t)+\lambda_{56} \pi_{6}(t)+\lambda_{57} \pi_{7}(t)\right) \delta t
$$

Discrete state, continuous time States and transitions

Or,

$$
\begin{gathered}
\lim _{\delta t \rightarrow 0} \frac{\pi_{5}(t+\delta t)-\pi_{5}(t)}{\delta t}= \\
\frac{d \pi_{5}}{d t}(t)=-\left(\lambda_{25}+\lambda_{45}+\lambda_{65}\right) \pi_{5}(t) \\
+\lambda_{52} \pi_{2}(t)+\lambda_{53} \pi_{3}(t)+\lambda_{56} \pi_{6}(t)+\lambda_{57} \pi_{7}(t)
\end{gathered}
$$

Discrete state, continuous time States and transitions

Define for convenience

$$
\lambda_{55}=-\left(\lambda_{25}+\lambda_{45}+\lambda_{65}\right)
$$

Then

$$
\begin{gathered}
\frac{d \pi_{5}}{d t}(t)=\lambda_{55} \pi_{5}(t)+ \\
\lambda_{52} \pi_{2}(t)+\lambda_{53} \pi_{3}(t)+\lambda_{56} \pi_{6}(t)+\lambda_{57} \pi_{7}(t)
\end{gathered}
$$

Discrete state, continuous time States and transitions

- Define $\pi_{i}(t)=P\{X(t)=i\}$
- It is convenient to define $\lambda_{i i}=-\sum_{j \neq i} \lambda_{j i} * * *$
- Transition equations: $\frac{d \pi_{i}(t)}{d t}=\sum_{j} \lambda_{i j} \pi_{j}(t)$.
- Normalization equation: $\sum_{i} \pi_{i}(t)=1$.
* * * Often confusing!!!

Discrete state, continuous time Transition equations - Matrix-Vector Form

- Define $\pi(t), \nu$ as before.

Define $\Lambda=\left[\begin{array}{llll}\lambda_{11} & \lambda_{12} & \ldots & \lambda_{1 n} \\ \lambda_{21} & \lambda_{22} & \ldots & \lambda_{2 n} \\ & & \ldots & \\ \lambda_{n 1} & \lambda_{n 2} & \ldots & \lambda_{n n}\end{array}\right]$

- Transition equations: $\frac{d \pi(t)}{d t}=\Lambda \pi(t)$.
- Normalization equation: $\nu^{\top} \pi=1$.

Discrete state, continuous time Steady State

- Steady state: $\pi_{i}=\lim _{t \rightarrow \infty} \pi_{i}(t)$, if it exists.
- Steady-state transition equations: $0=\sum_{j} \lambda_{i j} \pi_{j}$.
- Alternatively, steady-state balance equations: $\pi_{i} \sum_{m, m \neq i} \lambda_{m i}=\sum_{j, j \neq i} \lambda_{i j} \pi_{j}$
- Normalization equation: $\sum_{i} \pi_{i}=1$.

Discrete state, continuous time Steady State - Matrix-Vector Form

- Steady state: $\pi=\lim _{t \rightarrow \infty} \pi(t)$, if it exists.
- Steady-state transition equations: $0=\Lambda \pi$.
- Normalization equation: $\nu^{\top} \pi=1$.

Discrete state, continuous time

 Sources of confusion in continuous time models- Never Draw self-loops in continuous time markov process graphs.
- Never write $1-\lambda_{14}-\lambda_{24}-\lambda_{64}$. Write

$$
\begin{array}{ll}
\star & 1-\left(\lambda_{14}+\lambda_{24}+\lambda_{64}\right) \delta t, \text { or } \\
\star & -\left(\lambda_{14}+\lambda_{24}+\lambda_{64}\right)
\end{array}
$$

- $\lambda_{i i}=-\sum_{j \neq i} \lambda_{j i}$ is NOT a rate and NOT a probability. It is ONLY a convenient notation.

Discrete state, continuous time Exponential distribution

Exponential random variable T : the time to move from state 1 to state 0 .

Discrete state, continuous time Exponential distribution

$\pi(0, t+\delta t)=$

$$
\begin{aligned}
& P[\alpha(t+\delta t)=0 \mid \alpha(t)=1] P[\alpha(t)=1]+ \\
& P[\alpha(t+\delta t)=0 \mid \alpha(t)=0] P[\alpha(t)=0]
\end{aligned}
$$

or

$$
\pi(0, t+\delta t)=\mu \delta t \pi(1, t)+\pi(0, t)+o(\delta t)
$$

or

$$
\frac{d \pi(0, t)}{d t}=\mu \pi(1, t)
$$

Discrete state, continuous time Exponential distribution

Or,

$$
\frac{d \pi(1, t)}{d t}=-\mu \pi(1, t)
$$

If $\pi(1,0)=1$, then

$$
\pi(1, t)=e^{-\mu t}
$$

and

$$
\pi(0, t)=1-e^{-\mu t}
$$

Discrete state, continuous time Exponential distribution

The probability that the transition takes place at some $T \in[t, t+\delta t]$ is

$$
\begin{aligned}
P & {[\alpha(t+\delta t)=0 \text { and } \alpha(t)=1] } \\
& =P[\alpha(t+\delta t)=0 \mid \alpha(t)=1] P[\alpha(t)=1] \\
& =(\mu \delta t)\left(e^{-\mu t}\right)
\end{aligned}
$$

The exponential density function is therefore $\mu e^{-\mu t}$ for $t \geq 0$ and 0 for $t<0$.
The time of the transition from 1 to 0 is said to be exponentially distributed with rate μ.

The expected transition time is $1 / \mu$. (Prove it!)

Discrete state, continuous time Exponential distribution

- $f(t)=\mu e^{-\mu t}$ for $t \geq 0 ; f(t)=0$ otherwise;
$F(t)=1-e^{-\mu t}$ for $t \geq 0 ; F(t)=0$ otherwise.
- $E T=1 / \mu, V_{T}=1 / \mu^{2}$. Therefore, $\sigma=E T$ so $\mathrm{cv}=1$.

Markov processes Exponential

Density function

Exponential density function and a small number of samples.

Discrete state, continuous time Exponential distribution: some properties

- Memorylessness:
$P(T>t+x \mid T>x)=P(T>t)$
- $P(t \leq T \leq t+\delta t \mid T \geq t) \approx \mu \delta t$ for small δt.

Discrete state, continuous time Exponential distribution: some properties

- If T_{1}, \ldots, T_{n} are independent exponentially distributed random variables with parameters $\mu_{1} \ldots, \mu_{n}$, and
- $T=\min \left(T_{1}, \ldots, T_{n}\right)$, then
- T is an exponentially distributed random variable with parameter $\mu=\mu_{1}+\ldots+\mu_{n}$.

Discrete state, continuous time Unreliable machine

Continuous time unreliable machine.

Discrete state, continuous time Unreliable machine

From the Law of Total Probability:
$P(\{$ the machine is up at time $t+\delta t\})=$
$P(\{$ the machine is up at time $t+\delta t \mid$ the machine was up at time $t\}) \times$ $P(\{$ the machine was up at time $t\})+$
$P(\{$ the machine is up at time $t+\delta t \mid$ the machine was down at time $t\}) \times$ $P(\{$ the machine was down at time $t\})$
$+o(\delta t)$
and similarly for $P(\{$ the machine is down at time $t+\delta t\})$.

Discrete state, continuous time Unreliable machine

Probability distribution notation and dynamics:
$\pi(1, t)=$ the probability that the machine is up at time t. $\pi(0, t)=$ the probability that the machine is down at time t.
P (the machine is up at time $t+\delta t \mid$ the machine was up at time t)

$$
=1-p \delta t
$$

P (the machine is up at time $t+\delta t \mid$ the machine was down at time t)

$$
=r \delta t
$$

Discrete state, continuous time Unreliable machine

Therefore

$$
\pi(1, t+\delta t)=(1-p \delta t) \pi(1, t)+r \delta t \pi(0, t)+o(\delta t)
$$

Similarly,

$$
\pi(0, t+\delta t)=p \delta t \pi(1, t)+(1-r \delta t) \pi(0, t)+o(\delta t)
$$

Discrete state, continuous time Unreliable machine

or,

$$
\pi(1, t+\delta t)-\pi(1, t)=-p \delta t \pi(1, t)+r \delta t \pi(0, t)+o(\delta t)
$$

or,

$$
\frac{\pi(1, t+\delta t)-\pi(1, t)}{\delta t}=-p \pi(1, t)+r \pi(0, t)+\frac{o(\delta t)}{\delta t}
$$

Discrete state, continuous time

or,

$$
\begin{aligned}
& \frac{d \pi(0, t)}{d t}=-\pi(0, t) r+\pi(1, t) p \\
& \frac{d \pi(1, t)}{d t}=\pi(0, t) r-\pi(1, t) p
\end{aligned}
$$

Markov processes

Unreliable machine

Solution

$$
\begin{aligned}
& \pi(0, t)=\frac{p}{r+p}+\left[\pi(0,0)-\frac{p}{r+p}\right] e^{-(r+p) t} \\
& \pi(1, t)=1-\pi(0, t) .
\end{aligned}
$$

As $t \rightarrow \infty$,

$$
\begin{aligned}
& \pi(0) \rightarrow \frac{p}{r+p}, \\
& \pi(1) \rightarrow \frac{r}{r+p}
\end{aligned}
$$

Markov processes Unreliable machine

Steady-state solution

If the machine makes μ parts per time unit on the average when it is operational, the overall average production rate is

$$
\mu \pi(1)=\mu \frac{r}{r+p}
$$

Discrete state, continuous time

 Poisson Process

- Let $T_{i}, i=1, \ldots$ be a set of independent exponentially distributed random variables with parameter λ. Each random variable may represent the time between occurrences of a repeating event.
* Examples: customer arrivals, clicks of a Geiger counter
- Then $\sum_{i=1}^{n} T_{i}$ is the time required for n such events.

Discrete state, continuous time

 Poisson Process

- Informally: $N(t)$ is the number of events that occur between 0 and t.
- Formally: Define

$$
N(t)=\left\{\begin{array}{l}
0 \text { if } T_{1}>t \\
n \text { such that } \sum_{i=1}^{n} T_{i} \leq t, \quad \sum_{i=1}^{n+1} T_{i}>t
\end{array}\right.
$$

- Then $N(t)$ is a Poisson process with parameter λ.

Discrete state, continuous time Poisson Process

$$
P(N(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

$$
\lambda t=6
$$

Discrete state, continuous time Poisson Process

$$
P(N(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, \quad \lambda=2
$$

Queueing theory
 M/M/1 Queue

- Simplest model is the $M / M / 1$ queue:
* Exponentially distributed inter-arrival times - mean is $1 / \lambda ; \lambda$ is arrival rate (customers/time). (Poisson arrival process.)
\star Exponentially distributed service times - mean is $1 / \mu$; μ is service rate (customers/time).
* 1 server.
* Infinite waiting area.
- Define the utilization $\rho=\lambda / \mu$.

Queueing theory M/M/1 Queue

Number of customers in the system as a function of time for a $M / M / 1$ queue.

Queueing theory D/D/1 Gueue

Number of customers in the system as a function of time for a $D / D / 1$ queue.

Queueing theory M/M/1 Queue

State space

Queueing theory M/M/1 Queue

Let $\pi(n, t)$ be the probability that there are n parts in the system at time t. Then,

$$
\begin{aligned}
\pi(n, t+\delta t)= & \pi(n-1, t) \lambda \delta t+\pi(n+1, t) \mu \delta t+ \\
& \pi(n, t)(1-(\lambda \delta t+\mu \delta t))+o(\delta t) \\
& \text { for } n>0
\end{aligned}
$$

and

$$
\pi(0, t+\delta t)=\pi(1, t) \mu \delta t+\pi(0, t)(1-\lambda \delta t)+o(\delta t)
$$

Queueing theory
 M/M/1 Queue

Or,

$$
\begin{aligned}
\frac{d \pi(n, t)}{d t}= & \pi(n-1, t) \lambda+\pi(n+1, t) \mu-\pi(n, t)(\lambda+\mu), \\
& n>0 \\
\frac{d \pi(0, t)}{d t}= & \pi(1, t) \mu-\pi(0, t) \lambda .
\end{aligned}
$$

If a steady state distribution exists, it satisfies

$$
\begin{aligned}
& 0=\pi(n-1) \lambda+\pi(n+1) \mu-\pi(n)(\lambda+\mu), n>0 \\
& 0=\pi(1) \mu-\pi(0) \lambda .
\end{aligned}
$$

Why "if"?

Queueing theory M/M/1 Queue - Steady State

Let $\rho=\lambda / \mu$. These equations are satisfied by

$$
\pi(n)=(1-\rho) \rho^{n}, n \geq 0
$$

if $\rho<1$.
The average number of parts in the system is

$$
\bar{n}=\sum_{n} n \pi(n)=\frac{\rho}{1-\rho}=\frac{\lambda}{\mu-\lambda} .
$$

Queueing theory
 Little's Law

- True for most systems of practical interest (not just $M / M / 1$)
- Steady state only.
- $L=$ the average number of customers in a system.
- $W=$ the average delay experienced by a customer in the system.

$$
L=\lambda W
$$

In the $M / M / 1$ queue, $L=\bar{n}$ and

$$
W=\frac{1}{\mu-\lambda} .
$$

Queueing theory
 Sample path

- Suppose customers arrive in a Poisson process with average inter-arrival time $1 / \lambda=1$ minute; and that service time is exponentially distributed with average service time $1 / \mu=54$ seconds.
\star The average number of customers in the system is 9 .

Queue behavior over a short time interval - initial transient

Queueing theory Sample path

Queue behavior over a long time interval

Queueing theory M/M/1 Queue capacity

- μ is the capacity of the system.
- If $\lambda<\mu$, system is stable and waiting time remains bounded.
- If $\lambda>\mu$, waiting time grows over time.

Queueing theory M/M/1 Queue capacity

- To increase capacity, increase μ.
- To decrease delay for a given λ, increase μ.

Queueing theory Other Single-Stage Models

Things get more complicated when:

- There are multiple servers.
- There is finite space for queueing.
- The arrival process is not Poisson.
- The service process is not exponential.

Closed formulas and approximations exist for some, but not all, cases.

Queueing theory $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queue

Queueing theory M/M/s Queue

- The service rate when there are $k>s$ customers in the system is $s \mu$ since all s servers are always busy.
- The service rate when there are $k \leq s$ customers in the system is $k \mu$ since only k of the servers are busy.

Queueing theory $\mathrm{m} / \mathrm{M} / \mathrm{s}$ Queue

$$
P(k)= \begin{cases}\pi(0) \frac{s^{k} \rho^{k}}{k!}, & k \leq s \\ \pi(0) \frac{s^{s} \rho^{k}}{s!}, & k>s\end{cases}
$$

where

$$
\rho=\frac{\lambda}{s \mu}<1 ; \quad \pi(0) \text { chosen so that } \sum_{k} P(k)=1
$$

Queueing theory $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queue

W vs. $\lambda ; s \mu=\mathrm{constant}$

Copyright (C)2016 Stanley B. Gershwin.

Queueing theory $\mathrm{M} / \mathrm{M} / \mathrm{s}$ Queue

L vs. $\lambda ; s \mu=$ constant

Queueing theory
 $\mathrm{m} / \mathrm{M} / \mathrm{s}$ Queue

- Why do all the curves go to infinity at the same value of λ ?
- Why does $L \rightarrow 0$ when $\lambda \rightarrow 0$?
- Why is the $(\mu, s)=(.5,8)$ curve the highest, followed by $(\mu, s)=(1,4)$, etc.?

Queueing theory Networks of Queues

- Set of queues where customers can go to another queue after completing service at a queue.
- Open network: where customers enter and leave the system. λ is known and we must find L and W.
- Closed network: where the population of the system is constant. L is known and we must find λ and W.

Queueing theory Networks of Queues

Examples of Open networks

- internet traffic
- emergency room
- food court
- airport (arrive, ticket counter, security, passport control, gate, board plane)
- factory with no centralized material flow control after material enters

Queueing theory Networks of Queues

Examples of Closed networks

- factory with material controlled by keeping the number of items constant (CONWIP)
- factory with limited fixtures or pallets

Queueing theory Jackson Networks

Queueing networks are often modeled as Jackson networks.

- Relatively easy to compute performance measures (capacity, average time in system, average queue lengths).
- Easily provides intuition.
- Easy to optimize and to use for design.
- Valid (or good approximation) for a large class of systems ...

Queueing theory Jackson Networks

- ... but not all. Storage areas must be infinite (i.e., blocking never occurs).
* This assumption leads to bad results for systems with bottlenecks at locations other than the first station.

Queueing theory Open Jackson Networks

Goal of analysis: to say something about how much inventory there is in this system and how it is distributed.

Queueing theory Open Jackson Networks

- Items arrive from outside the system to node i according to a Poisson process with rate α_{i}.
- $\alpha_{i}>0$ for at least one i.
- When an item's service at node i is finished, it goes to node j next with probability $p_{i j}$.
- If $p_{i 0}=1-\sum_{j} p_{i j}>0$, then items depart from the network from node i.
- $p_{i 0}>0$ for at least one i.
- We will focus on the special case in which each node has a single server with exponential processing time. The service rate of node i is μ_{i}.

Queueing theory Open Jackson Networks

- Define λ_{i} as the total arrival rate of items to node i. This includes items entering the network at i and items coming from all other nodes.
- Then $\lambda_{i}=\alpha_{i}+\sum_{j} p_{j i} \lambda_{j}$
- In matrix form, let λ be the vector of λ_{i}, α be the vector of α_{i}, and P be the matrix of $p_{i j}$. Then

$$
\lambda=\alpha+\mathrm{P}^{T} \lambda
$$

or

$$
\lambda=\left(I-\mathrm{P}^{T}\right)^{-1} \alpha
$$

Queueing theory Open Jackson Networks

- Define $\pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ to be the steady-state probability that there are n_{i} items at node $i, i=1, \ldots, k$.
- Define $\rho_{i}=\lambda_{i} / \mu_{i} ; \quad \pi_{i}\left(n_{i}\right)=\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}$.
- Then

$$
\begin{gathered}
\pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\prod_{i} \pi_{i}\left(n_{i}\right) \\
\bar{n}_{i}=E n_{i}=\frac{\rho_{i}}{1-\rho_{i}}
\end{gathered}
$$

Does this look familiar?

Queueing theory Open Jackson Networks

- This looks as though each station is an $M / M / 1$ queue. But even though this is NOT in general true, the formula holds.
- The product form solution holds for some more general cases.
- This exact analytic formula is the reason that the Jackson network model is very widely used sometimes where it does not belong!

Queueing theory Closed Jackson Networks

- Consider an extension in which
* $\alpha_{i}=0$ for all nodes i.
$\star p_{i 0}=1-\sum_{j} p_{i j}=0$ for all nodes i.
- Then
* Since nothing is entering and nothing is departing from the network, the number of items in the network is constant.
That is, $\sum_{i} n_{i}(t)=N$ for all t.
* $\lambda_{i}=\sum_{j} p_{j i} \lambda_{j}$ does not have a unique solution: If $\left\{\lambda_{1}^{*}, \lambda_{2}^{*}, \ldots, \lambda_{k}^{*}\right\}$ is a solution, then $\left\{s \lambda_{1}^{*}, s \lambda_{2}^{*}, \ldots, s \lambda_{k}^{*}\right\}$ is also a solution for any $s \geq 0$.

Queueing theory Closed Jackson Networks

For some s, define

$$
\pi^{o}\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\prod_{i}\left[\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}\right]
$$

where

$$
\rho_{i}=\frac{s \lambda_{i}^{*}}{\mu_{i}}
$$

This looks like the open network probability distribution (Slide 89), but it is a function of s.

Queueing theory Closed Jackson Networks

Consider a closed network with a population of N. Then if $\sum_{i} n_{i}=N$,

$$
\pi\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\frac{\pi^{o}\left(n_{1}, n_{2}, \ldots, n_{k}\right)}{\sum_{m_{1}+m_{2}+\ldots+m_{k}=N} \pi^{o}\left(m_{1}, m_{2}, \ldots, m_{k}\right)}
$$

Since π^{0} is a function of s, it looks like π is a function of s. But it is not, because all the s's cancel! There are nice ways of calculating

$$
C(k, N)=\sum_{m_{1}+m_{2}+\ldots+m_{k}=N} \pi^{o}\left(m_{1}, m_{2}, \ldots, m_{k}\right)
$$

Queueing theory Closed Jackson Network model of an FMS

Solberg's "CANQ" model.

Let $\left\{p_{i j}\right\}$ be the set of routing probabilities, as defined on Slide 87.
$p_{i M}=1$ if $i \neq M$
$p_{M j}=q_{j}$ if $j \neq M$
$p_{i j}=0$ otherwise
Service rate at Station i is μ_{i}.

Queueing theory Closed Jackson Network model of an FMS

Let N be the number of pallets.
The production rate is

$$
P=\frac{C(M, N-1)}{C(M, N)} \mu_{m}
$$

and $C(M, N)$ is easy to calculate in this case.

- Input data: $M, N, q_{j}, \mu_{j}(j=1, \ldots, M)$
- Output data: $P, W, \rho_{j}(j=1, \ldots, M)$

Queueing theory Closed Jackson Network model of an FMS

Queueing theory Closed Jackson Network model of an FMS

Average time in system

Queueing theory Closed Jackson Network model of an FMS

Utilization

Queueing theory Closed Jackson Network model of an FMS

Queueing theory Closed Jackson Network model of an FMS

Average time in system

Queueing theory Closed Jackson Network model of an FMS

MIT OpenCourseWare
https://ocw.mit.edu

2.854 / 2.853 Introduction To Manufacturing Systems

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

