MIT 2.853/2.854

Introduction to Manufacturing Systems

Probability

Stanley B. Gershwin

Laboratory for Manufacturing and Productivity Massachusetts Institute of Technology

Probability and Statistics Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: What is the probability that it will show heads on the next flip?

Probability and Statistics Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: How much would you bet that it will show heads on the next flip?

Probability and Statistics Still Another Trick Question

I flip a coin 100 times, and it shows heads every time.

Question: What odds would you demand before you bet that it will show heads on the next flip?

Probability and Statistics

Probability \neq Statistics

Probability: mathematical theory that describes uncertainty.

Statistics: set of techniques for extracting useful information from data.

Interpretations of probability

 FrequencyThe probability that the outcome of an experiment is A is $P(A) \ldots$
if the experiment is performed a large number of times and the fraction of times that the observed outcome is A is $P(A)$.

Interpretations of probability Parallel universes

The probability that the outcome of an experiment is A is $P(A)$...
if the experiment is performed in each parallel universe and the fraction of universes in which the observed outcome is A is $P(A)$.

Interpretations of probability
 Betting odds

The probability that the outcome of an experiment is A is $P(A)$...
if before the experiment is performed a risk-neutral observer would be willing to bet $\$ 1$ against more than $\$ \frac{1-P(A)}{P(A)}$.

The expected value (slide 35) of the bet is greater than

$$
(1-P(A)) \times(-1)+P(A) \times \frac{1-P(A)}{P(A)}=0
$$

Interpretations of probability State of belief

The probability that the outcome of an experiment is A is $P(A)$...
if that is the opinion (ie, belief or state of mind) of an observer before the experiment is performed.

Interpretations of probability

Abstract measure

The probability that the outcome of an experiment is A is $P(A) \ldots$
if $P()$ satisfies a certain set of conditions: the axioms of probability.

Interpretations of probability

Axioms of probability

Let U be a set of samples. Let E_{1}, E_{2}, \ldots be subsets of U.

Let \emptyset be the null (or empty) set, the set that has no elements.

- $0 \leq P\left(E_{i}\right) \leq 1$
- $P(U)=1$
- $P(\emptyset)=0$
- If $E_{i} \cap E_{j}=\emptyset$, then $P\left(E_{i} \cup E_{j}\right)=P\left(E_{i}\right)+P\left(E_{j}\right)$

Probability Basics
 Discrete Sample Space

Notation, terminology:

- ω is often used as the symbol for a generic sample.
- Subsets of U are called events.
- $P(E)$ is the probability of E.

Probability Basics
 Discrete Sample Space

- Example: Throw a single die. The possible outcomes are $\{1,2,3,4,5,6\}$. ω can be any one of those values.
- Example: Consider $n(t)$, the number of parts in inventory at time t. Then

$$
\omega=\{n(1), n(2), \ldots, n(t), \ldots .\}
$$

is a sample path.

Probability Basics
 Discrete Sample Space

- An event can often be defined by a statement. For example,

$$
\mathcal{E}=\{\text { There are } 6 \text { parts in the buffer at time } t=12\}
$$

Formally, this can be written

$$
\mathcal{E}=\text { the set of all } \omega \text { such that } n(12)=6
$$

or,

$$
\mathcal{E}=\{\omega \mid n(12)=6\}
$$

Probability Basics
 Discrete Sample Space

Probability Basics

Set Theory

Venn diagrams

Probability Basics

Set Theory

Venn diagrams

Probability Basics

Independence
A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

Probability Basics

Conditional Probability

We can also write $P(A \cap B)=P(A \mid B) P(B)$.

Probability Basics

Conditional Probability

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

Example: Throw a die.Let

- A is the event of getting an odd number $(1,3,5)$.
- B is the event of getting a number less than or equal to $3(1,2,3)$.
Then $P(A)=P(B)=1 / 2, P(A \cap B)=P(1,3)=1 / 3$.
Also, $P(A \mid B)=P(A \cap B) / P(B)=2 / 3$.

Probability Basics

Law of Total Probability

- Let $B=C \cup D$ and assume $C \cap D=\emptyset$. Then

$$
P(A \mid C)=\frac{P(A \cap C)}{P(C)} \text { and } P(A \mid D)=\frac{P(A \cap D)}{P(D)}
$$

Probability Basics

Law of Total Probability

Also,

- $P(C \mid B)=\frac{P(C \cap B)}{P(B)}=\frac{P(C)}{P(B)}$ because $C \cap B=C$.

Similarly, $P(D \mid B)=\frac{P(D)}{P(B)}$

- $A \cap B=A \cap(C \cup D)=(A \cap C) \cup P(A \cap D)$
- Therefore

$$
\begin{aligned}
& P(A \cap B)=P(A \cap(C \cup D)) \\
&=P(A \cap C)+P(A \cap D) \text { because }(A \cap C) \text { and }(A \cap D) \text { are } \\
& \text { disjoint. }
\end{aligned}
$$

Probability Basics

Law of Total Probability

- Or, $P(A \mid B) P(B)=P(A \mid C) P(C)+P(A \mid D) P(D)$
or,

$$
\frac{P(A \mid B) P(B)}{P(B)}=\frac{P(A \mid C) P(C)}{P(B)}+\frac{P(A \mid D) P(D)}{P(B)}
$$

or,

$$
P(A \mid B)=P(A \mid C) P(C \mid B)+P(A \mid D) P(D \mid B)
$$

Probability Basics

Law of Total Probability

An important case is when $C \cup D=B=U$, so that $A \cap B=$ A. Then $P(A)=P(A \cap C)+P(A \cap D)$ or

$$
P(A)=P(A \mid C) P(C)+P(A \mid D) P(D)
$$

Probability Basics

 Law of Total Probability

More generally, if A and $\mathcal{E}_{1}, \ldots \mathcal{E}_{k}$ are events and
\mathcal{E}_{i} and $\mathcal{E}_{j}=\emptyset$, for all $i \neq j$
and

$$
\bigcup_{j} \mathcal{E}_{j}=\text { the universal set }
$$

(ie, the set of \mathcal{E}_{j} sets is mutually exclusive and collectively exhaustive) then ...

Probability Basics

 Law of Total Probability$$
\sum_{j} P\left(\mathcal{E}_{j}\right)=1
$$

and

$$
P(A)=\sum_{j} P\left(A \mid \mathcal{E}_{j}\right) P\left(\mathcal{E}_{j}\right)
$$

Probability Basics

Law of Total Probability

Example

$A=\{I$ will have a cold tomorrow. $\}$
$\mathcal{E}_{1}=\{\mathrm{It}$ is raining today. $\}$
$\mathcal{E}_{2}=\{\mathrm{It}$ is snowing today. $\}$
$\mathcal{E}_{3}=\{\mathrm{It}$ is sunny today. $\}$
(Assume $\mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \mathcal{E}_{3}=U$ and $\mathcal{E}_{1} \cap \mathcal{E}_{2}=\mathcal{E}_{1} \cap \mathcal{E}_{3}=\mathcal{E}_{2} \cap \mathcal{E}_{3}=\emptyset$.)
Then $A \cap \mathcal{E}_{1}=\{I$ will have a cold tomorrow and it is raining today $\}$.
And $P\left(A \mid \mathcal{E}_{1}\right)$ is the probability I will have a cold tomorrow given that it is raining today.
etc.

Probability Basics

Law of Total Probability

Then
$\{I$ will have a cold tomorrow. $\}=$
$\{I$ will have a cold tomorrow and it is raining today $\}$
$\{I$ will have a cold tomorrow and it is snowing today \cup
\{I will have a cold tomorrow and it is sunny today\}

SO
$P(\{I$ will have a cold tomorrow. $\})=$
$P(\{I$ will have a cold tomorrow and it is raining today $\})+$ $P(\{I$ will have a cold tomorrow and it is snowing today $\})+$ $P(\{I$ will have a cold tomorrow and it is sunny today $\})$

Probability Basics Law of Total Probability

$P(\{$ I will have a cold tomorrow. $\})=$
$P(\{I$ will have a cold tomorrow \mid it is raining today $\}) P(\{$ it is raining today $\})+$ $P(\{$ I will have a cold tomorrow \mid it is snowing today $\}) P(\{$ it is snowing today $\})+$
$P(\{I$ will have a cold tomorrow \mid it is sunny today $\}) P(\{$ it is sunny today $\})$
or

$$
P(A)=P\left(A \mid \mathcal{E}_{1}\right) P\left(\mathcal{E}_{1}\right)+P\left(A \mid \mathcal{E}_{2}\right) P\left(\mathcal{E}_{2}\right)+P\left(A \mid \mathcal{E}_{3}\right) P\left(\mathcal{E}_{3}\right)
$$

Probability Basics
 Random Variables

Let V be a vector space. Then a random variable X is a mapping (a function) from U to V.

If $\omega \in U$ and $x=X(\omega) \in V$, then X is a random variable.
Example: V could be the real number line.

Typical notation :

- Upper case letters (X) are usually used for random variables and corresponding lower case letters (x) are usually used for possible values of random variables.
- Random variables $(X(\omega))$ are usually not written as functions; the argument (ω) of the random variable is usually not written. This sometimes causes confusion.

Probability Basics
 Random Variables

Flip of a Coin
Let $U=\mathrm{H}, \mathrm{T}$. Let $\omega=\mathrm{H}$ if we flip a coin and get heads; $\omega=\mathrm{T}$ if we flip a coin and get tails.

Let V be the real number line. Let $X(\omega)$ be the number of times we get heads. Then $X(\omega)=0$ or 1 .

Assume the coin is fair. (No tricks this time!) Then
$P(\omega=\mathrm{T})=P(X=0)=1 / 2$
$P(\omega=\mathrm{H})=P(X=1)=1 / 2$

Probability Basics

Random Variables
Flip of Three Coins
Let $U=\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}$.
Let $\omega=$ HHH if we flip 3 coins and get 3 heads; $\omega=$ HHT if we flip 3 coins and get 2 heads and then one tail, etc. The order matters! There are 8 samples.

- $P(\omega)=1 / 8$ for all ω.

Let X be the number of heads. Then $X=0,1,2$, or 3 .

- $P(X=0)=1 / 8 ; P(X=1)=3 / 8 ; P(X=2)=3 / 8$; $P(X=3)=1 / 8$.
There are 4 distinct values of X.

Probability Basics

Probability Distributions

Let $X(\omega)$ be a random variable. Then $P(X(\omega)=x)$ is the probability distribution of X (usually written $P(x)$). For three coin flips:

Probability Basics Probability Distributions

Mean and Variance
Mean (average): $\bar{x}=\mu_{x}=E(X)=\sum_{x} x P(x)$
Variance: $\quad V_{x}=\sigma_{x}^{2}=E\left(x-\mu_{x}\right)^{2}=\sum_{x}\left(x-\mu_{x}\right)^{2} P(x)$
Standard deviation: $\sigma_{x}=\sqrt{V_{x}}$
Coefficient of variation (cv): σ_{x} / μ_{x}

Probability Basics Probability Distributions

For three coin flips:

$$
\begin{aligned}
\bar{x} & =1.5 \\
v_{x} & =0.75 \\
\sigma_{x} & =0.866 \\
\mathrm{cv} & =0.577
\end{aligned}
$$

Probability Basics

Functions of a Random Variable

- A function of a random variable is a random variable.
- Special case: linear function

For every ω, let $Y(\omega)=a X(\omega)+b$. Then

$$
\begin{aligned}
& \star \bar{Y}=a \bar{X}+b . \\
& \star V_{Y}=a^{2} V_{X} ; \quad \sigma_{Y}=|a| \sigma_{X} .
\end{aligned}
$$

Probability Basics

Covariance

X and Y are random variables. Define the covariance of X and Y as:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right]
$$

Facts:

- $\operatorname{Var}(X+Y)=V_{x}+V_{y}+2 \operatorname{Cov}(X, Y)$
- If X and Y are independent, $\operatorname{Cov}(X, Y)=0$.
- If X and Y vary in the same direction, $\operatorname{Cov}(X, Y)>0$.
- If X and Y vary in the opposite direction, $\operatorname{Cov}(X, Y)<0$.

The correlation of X and Y is

$$
\begin{gathered}
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}} \\
-1 \leq \operatorname{Corr}(X, Y) \leq 1
\end{gathered}
$$

Discrete Random Variables Bernoulli

Flip a biased coin. Assume all flips are independent.
X^{B} is 1 if outcome is heads; 0 if tails.
$P\left(X^{B}=1\right)=p$.
$P\left(X^{B}=0\right)=1-p$.
X^{B} is Bernoulli.

Discrete Random Variables

Binomial

The sum of n independent Bernoulli random variables X_{i}^{B} with the same parameter p is a binomial random variable X^{b}.

$$
\begin{aligned}
& X^{b}=\sum_{i=0}^{n} X_{i}^{B} \\
& P\left(X^{b}=x\right)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{(n-x)}
\end{aligned}
$$

Discrete Random Variables
 Binomial probability distribution

Discrete Random Variables
 Geometric

The number of independent Bernoulli random variables X_{i}^{B} with the same parameter p tested until the first 1 appears is a geometrically distributed random variable X^{g}.

$$
X^{g}=k \text { if } X_{1}^{B}=0, X_{2}^{B}=0, \ldots, X_{k-1}^{B}=0, X_{k}^{B}=1
$$

Discrete Random Variables

Geometric

To calculate $P\left(X^{g}=k\right)$, recall that $P\left(X^{g}=1\right)=p$, so $P\left(X^{g}>1\right)=1-p$.
Then

$$
\begin{aligned}
P\left(X^{g}>k\right) & =P\left(X^{g}>k \mid X^{g}>k-1\right) P\left(X^{g}>k-1\right) \\
& =(1-p) P\left(X^{g}>k-1\right),
\end{aligned}
$$

because

$$
\begin{aligned}
& P\left(X^{g}>k \mid X^{g}>k-1\right)=P\left(X_{1}^{B}=0, \ldots, X_{k}^{B}=0 \mid X_{1}^{B}=0, \ldots, X_{k-1}^{B}=0\right) \\
& =1-p
\end{aligned}
$$

so
$P\left(X^{g}>1\right)=1-p, P\left(X^{g}>2\right)=(1-p)^{2}, \ldots P\left(X^{g}>k-1\right)=(1-p)^{k-1}$
and $P\left(X^{g}=k\right)=P\left(\left\{X^{g}>k-1\right\}\right.$ and $\left.\left\{X_{k}^{B}=1\right\}\right)=(1-p)^{k-1} p$.

Discrete Random Variables
 Geometric probability distribution

Discrete Random Variables Poisson Distribution

$P\left(X^{P}=x\right)=e^{-\lambda} \frac{\lambda^{x}}{x!}$
Discussion later.

Continuous Random Variables
 Philosophical Issues

1. Mathematically, continuous and discrete random variables are very different.
2. Quantitatively, however, some continuous models are very close to some discrete models.
3. Therefore, which kind of model to use for a given system is a matter of convenience .

Continuous Random Variables
 Philosophical Issues

Example: The production process for small metal parts (nuts, bolts, washers, etc.) might better be modeled as a continuous flow than as a large number of discrete parts.

Continuous Random Variables

Philosophical Issues

Continuous Random Variables

Philosophical Issues

Continuous Random Variables

Spaces

Dimensionality

- Continuous random variables can be defined * in one, two, three, ..., infinite dimensional spaces; \star in finite or infinite regions of the spaces.
- Continuous random variables can have
* probability measures with the same dimensionality as the space;
\star lower dimensionality than the space;
* a mix of dimensions.

Continuous Random Variables

No change in water levels

Continuous Random Variables

One kind of change in water levels

Continuous Random Variables Two-dimensional probability distribution

Continuous Random Variables

Trajectories

Continuous Random Variables

Discrete approximation of the probability distribution

Probability distribution of the amount of material in each of the two buffers.

Continuous Random Variables
 Densities and Distributions

In one dimension, $F()$ is the cumulative probability distribution of X if

$$
F(x)=P(X \leq x)
$$

$f()$ is the density function of X if

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

or

$$
f(x)=\frac{d F}{d x}
$$

wherever F is differentiable.

Continuous Random Variables
 Densities and Distributions

Fact: $\quad F(b)-F(a)=\int_{a}^{b} f(t) d t$

Fact: $f(x) \delta x \approx P(x \leq X \leq x+\delta x)$ for sufficiently small δx.

Definition: $\bar{x}=\int_{-\infty}^{\infty} t f(t) d t$

Continuous Random Variables
 Law of Total Probability

Scalar version

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X \mid Y}(x \mid y) f_{Y}(y) d y
$$

This is also extended to more dimensions.

Continuous Random Variables Normal Distribution

The density function of the normal (or gaussian) distribution with mean 0 and variance 1 (the standard normal) is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

The normal distribution function is

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

(There is no closed form expression for $F(x)$.)

Continuous Random Variables

Normal Distribution

$f(x)$

Continuous Random Variables
 Normal Distribution

Notation: $\boldsymbol{N}(\mu, \sigma)$ is the normal distribution with mean μ and variance σ^{2}.

Note: Some people write $N\left(\mu, \sigma^{2}\right)$ for the normal distribution with mean μ and variance σ^{2}.

Fact: If X and Y are normal, then $a X+b Y+c$ is normal.
Fact: If X is $N(\mu, \sigma)$, then $\frac{X-\mu}{\sigma}$ is $N(0,1)$, the standard normal.
This is why $N(0,1)$ is tabulated in books and why $N(\mu, \sigma)$ is easy to compute from $N(0,1)$.

Continuous Random Variables

 Truncated Normal Density
$P(x \leq X \leq x+\delta x)=\frac{f(x)}{1-F(0)} \delta x$ where $F()$ and $f()$ are the normal distribution and density functions with parameters μ and σ.

Continuous Random Variables

Another Kind of Truncated Normal Density

$P(x \leq X \leq x+\delta x)=f(x) \delta x$ for $x>0$ and $P(X=0)=F(0)$ where $F()$ and
$f()$ are the normal distribution and density functions with parameters μ and σ.

Continuous Random Variables
 Law of Large Numbers

Let $\left\{X_{k}\right\}$ be a sequence of independent identically distributed (i.i.d.) random variables that have the same finite mean μ. Let S_{n} be the sum of the first $n X_{k} \mathrm{~s}$, so

$$
S_{n}=X_{1}+\ldots+X_{n}
$$

Then for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{S_{n}}{n}-\mu\right|>\epsilon\right)=0
$$

That is, the average approaches the mean.

Continuous Random Variables
 Central Limit Theorem

Let $\left\{X_{k}\right\}$ be a sequence of i.i.d. random variables with finite mean μ and finite variance σ^{2}.
Then as $n \rightarrow \infty, P\left(\frac{S_{n}-n \mu}{\sqrt{n} \sigma}\right) \rightarrow N(0,1)$.

If we define A_{n} as S_{n} / n, the average of the first $n X_{k} \mathrm{~s}$, then this is equivalent to:

As $n \rightarrow \infty, P\left(A_{n}\right) \rightarrow N(\mu, \sigma / \sqrt{n})$.

Continuous Random Variables Coin flip examples

Probability of x heads in n flips of a fair coin

Continuous Random Variables

Binomial probability distribution approaches normal for large N.

Continuous Random Variables

Binomial distributions

Note the resemblance to a truncated normal in these examples.

Normal Density Function
 ... in Two Dimensions

More Continuous Distributions Uniform

$$
f(x)=\frac{1}{b-a} \quad \text { for } a \leq x \leq b
$$

$f(x)=0 \quad$ otherwise

More Continuous Distributions Uniform

Uniform density

Uniform distribution

More Continuous Distributions

 TriangularProbability density function

© Wikipedia. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

More Continuous Distributions

Triangular
Cumulative distribution function

© Wikipedia. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

More Continuous Distributions

Exponential

- $f(t)=\lambda e^{-\lambda t} \quad$ for $t \geq 0 ; \quad f(t)=0$ otherwise;

$$
P(T>t)=e^{-\lambda t} \quad \text { for } t \geq 0 ; \quad P(T>t)=1 \text { otherwise }
$$

- Close to the geometric distribution but for continuous time.
- Very mathematically convenient. Often used as model for the first time until an event occurs.
- Memorylessness:

$$
P(T>t+x \mid T>x)=P(T>t)
$$

The cumulative probability distribution

$$
F(t)=1-P(T>t)=1-e^{-\lambda t} \text { for } t \geq 0 ; \quad F(t)=0 \text { otherwise. }
$$

More Continuous Distributions Exponential

Discrete Random Variables Poisson Distribution

$$
P\left(X^{P}=x\right)=e^{-\lambda t} \frac{(\lambda t)^{x}}{x!}
$$

is the probability that x events happen in $[0, t]$ if the events are independent and the times between them are exponentially distributed with parameter λ.

Typical examples: arrivals and services at queues. (Next lecture!)

NOT Random ...but almost

A pseudo-random number generator is a set of numbers X_{0}, X_{1}, \ldots where there is a function F such that

$$
X_{n+1}=F\left(X_{n}\right)
$$

and F is such that the sequence of X_{n} satisfies certain conditions.
For example $0 \leq X_{n} \leq 1$ and the sequence X_{0}, X_{1}, \ldots looks like uniformly distributed, independent random variables.

That is, statistical tests say that the probability of the sequence not being independent uniform random variables is very small.

However the sequence is deterministic: it is determined by X_{0}, the seed of the random number generator.

Pseudo-random number generators are used extensively in simulation.

MIT OpenCourseWare
https://ocw.mit.edu

2.854 / 2.853 Introduction To Manufacturing Systems

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

