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Purpose of Optimization

Purpose of Optimization

Choosing the best of a set of alternatives.

Applications:
• investment, scheduling, system design, product

design, etc., etc.
Optimization is sometimes called mathematical
programming.
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Purpose of Optimization

Purpose of Optimization
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Typically, many designs are tested.
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Purpose of Optimization Issues

Purpose of Optimization
Issues

• For this to be practical, total computation time must be limited.
Therefore, we must control both computation time per iteration and
the number of iterations .

• Computation time per iteration includes evaluation time and the time to
determine the next design to be evaluated.

• The technical literature is generally focused on limiting the number of
iterations by proposing designs efficiently.

• Reducing computation time per iteration is accomplished by

? using analytical models rather than simulations
? using coarser approximations in early iterations and more

accurate evaluation later.
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Problem Statement

Problem Statement
X is a set of possible choices. J is a scalar function defined on X.
h and g are vector functions defined on X.

Problem: Find x ∈ X that satisfies

J(x) is maximized (or minimized) — the objective

subject to

h(x) = 0 — equality constraints

g(x) ≤ 0 — inequality constraints
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Taxonomy

Taxonomy

• static/dynamic

• deterministic/stochastic

• X set: continuous/discrete/mixed

(Extensions: multi-objective (or multi-criterion) optimization, in
which there are multiple objectives that must somehow be
reconciled; games, in which there are multiple optimizers, each
choosing different xs.)
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Continuous Variables and Objective

Continuous Variables
X = Rn. J is a scalar function defined on Rn. h(∈ Rm) and
g(∈ Rk) are vector functions defined on Rn.

Problem: Find x ∈ Rn that satisfies

J(x) is maximized (or minimized)

subject to

h(x) = 0

g(x) ≤ 0
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Continuous Variables and Objective Unconstrained

Continuous Variables
One-dimensional search

Motivation: Part of some optimization methods; also
useful for other purposes.

Find t such that f(t) = 0.
• This is equivalent to

Find t to maximize (or minimize) F (t)
when F (t) is differentiable, and f(t) = dF (t)/dt is
continuous.

• If f(t) is differentiable, maximization or
minimization is possible depending on the sign of

2d F (t) 2/dt .
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Continuous Variables and Objective Unconstrained

Continuous Variables
One-dimensional search

t0 t1t2

t0

t2

t1

t’0 t’1

f(t)

t

f(   )

f(   )

f(   )

Assume f(t) is decreasing.

• Binary search: Guess t0 and
t1 such that f(t0) > 0 and
f(t1) < 0. Let
t2 = (t0 + t1)/2.

? If f(t2) < 0, then
repeat with t′0 = t0
and t′1 = t2.

? If f(t2) > 0, then
repeat with t′0 = t2
and t′1 = t1.
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Continuous Variables and Objective Unconstrained

Continuous Variables
One-dimensional search

Example:
f(t) = 4− 2t

t0 t2 f(t2) t1
0 1.5 + 3
1.5 2.25 - 3
1.5 1.875 + 2.25
1.875 2.0625 - 2.25
1.875 1.96875 + 2.0625
1.96875 2.015625 - 2.0625
1.96875 1.9921875 + 2.015625
1.9921875 2.00390625 - 2.015625
1.9921875 1.998046875 + 2.00390625
1.998046875 2.0009765625 - 2.00390625
1.998046875 1.99951171875 + 2.0009765625
1.99951171875 2.000244140625 - 2.0009765625
1.99951171875 1.9998779296875 + 2.000244140625
1.9998779296875 2.00006103515625 - 2.000244140625
1.9998779296875 1.99996948242188 + 2.00006103515625
1.99996948242188 2.00001525878906 - 2.00006103515625
1.99996948242188 1.99999237060547 + 2.00001525878906
1.99999237060547 2.00000381469727 - 2.00001525878906
1.99999237060547 1.99999809265137 + 2.00000381469727
1.99999809265137 2.00000095367432 - 2.00000381469727
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Continuous Variables and Objective Unconstrained

Continuous Variables
One-dimensional search

t0 t1

t0f(   )

t1

f(t)

t

f(   )

• Newton search, exact tangent:

? Guess t0. Calculate
df(t0)/dt.

? Choose t1 so that
f(t0) + (t − t d

0) f(t0)
1 dt

= 0.

? Repeat with t′0 = t1 until
|f(t′0)| is small enough.

Optimization 11 Copyright ©c 2016 Stanley B. Gershwin.



Continuous Variables and Objective Unconstrained

Continuous Variables
One-dimensional search

Example:
f(t) = 4− 2t

t0 f(t0)
3 -
2.16666666666667 -
2.00641025641026 -
2.00001024002621 -
2.00000000002621 -
2
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Continuous Variables and Objective Unconstrained

Continuous Variables
One-dimensional search

t0 t1t2

t1

t0f(   )

t2

f(t)

tf(   )

f(   )

• Newton search, approximate
tangent:

? Guess t0 and t1. Calculate
approximate slope
s = f(t1)−f(t0) .t1−t0

? Choose t2 so that
f(t0) + (t2 − t0)s = 0.

? Repeat with t′0 = t1 and
t′1 = t2 until |f(t′0)| is small
enough.
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Continuous Variables and Objective Unconstrained

Continuous Variables
One-dimensional search

Example:
f(t) = 4− 2t

t0 f(t0)
0 +
3 -
1.33333333333333 +
1.84615384615385 +
2.03225806451613 -
1.99872040946897 +
1.99998976002621 +
2.0000000032768 -
1.99999999999999 +
2
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Continuous Variables and Objective Multi-dimensional optimization

Continuous Variables
Multi-dimensional optimization

x
1

x
2

J

Optimum

Steepest

Ascent 

Directions

Optimum often found
by steepest ascent or
hill-climbing methods.
(Steepest descent for
minimization.)
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Continuous Variables and Objective Gradient search

Continuous Variables
Multi-dimensional optimization

To maximize J(x), where x is a vector (and J is a scalar function that has
nice properties):

0. Set n = 0. Guess x0.

1. Evaluate ∂J x∂x ( n).

2. Let t be a scalar. Define

Jn(t) = J

{
xn + ∂J

t (xn)
∂x

}
Find (by one-dimensional search ) t?n, the value of t that maximizes
Jn(t).

3. Set xn+1 = xn + t? ∂J
n x∂x ( n).

4. Set n← n+ 1. Go to Step 1.
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Continuous Variables and Objective Gradient search

Continuous Variables
Multi-dimensional optimization

Initial Guess
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Continuous Variables and Objective Constrained

Continuous Variables
Equality constrained

x
1

x
2

J

Constrained 

Optimum

h(x  , x  ) = 0
1 2

Equality constrained: solution is
on the constraint surface.

Problems are much easier when
constraint is linear, ie, when the
surface is a plane.

• In that case, replace
∂J/∂x by its projection
onto the constraint plane.

• But first: find an initial
feasible guess.
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Continuous Variables and Objective Constrained

Continuous Variables
Inequality constrained

x
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J
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Inequality constrained:
solution is required to
be on one side of the
plane.

Inequality constraints that are satisfied with equality are called effective or
active constraints.

If we knew which constraints would be effective, the problem would reduce to
an equality-constrained optimization.
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Continuous Variables and Objective Nonlinear Programming

Continuous Variables
Inequality constrained

Optimization problems with continuous variables,
objective, and constraints are called nonlinear
programming problems, especially when at least one of
J, h, g are not linear.
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Continuous Variables and Objective Multiple Optima

Continuous Variables
Inequality constrained

x
1

x
2

J

Global Maximum

Local (or Relative)

Maxima

Danger: a search might find a local, rather than the
global, optimum.
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Continuous Variables and Objective Karush-Kuhn-Tucker Conditions

Continuous Variables
Inequality constrained
J is a scalar function defined on Rn. h(∈ Rm) and g(∈ Rk) are
vector functions defined on Rn.

Problem: Find x ∈ Rn that satisfies

J(x) is minimized

subject to

h(x) = 0

g(x) ≤ 0

See the “KKT Examples” notes.
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Continuous Variables and Objective Karush-Kuhn-Tucker Conditions — Vector notation

Continuous Variables
Inequality constrained

• Let x∗ be a local minimum.

• Assume all gradient vectors ∂h /∂x, ∂g /∂x, (where g is
effective) are linearly independent

i

(the constraint
j j

qualification ).

• Then there exist vectors λ and µ of appropriate dimension
(µ ≥ 0 component-wise) such that at x = x∗,

∂J

∂x
+ λT ∂h

∂x
+ µT ∂g = 0

∂x

µTg = 0
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Continuous Variables and Objective Karush-Kuhn-Tucker Conditions — Vector notation

Continuous Variables
Inequality constrained

The KKT conditions transform the optimization problem into a problem of
simultaneously satisfying a set of equations and inequalities with additional
variables (λ and µ):

h(x) = 0

g(x) ≤ 0

µ ≥ 0

∂J

∂x
+ λT ∂h

∂x
+ µT ∂g = 0

∂x

µT g = 0
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Continuous Variables and Objective Karush-Kuhn-Tucker Conditions — Subscript notation

Continuous Variables
Inequality constrained

There exist vectors λ ∈ Rm and µ ∈ Rk (µj ≥ 0) such that at x = x∗,

∂J

∂xi
+

m∑
q=1

λq
∂hq

∂xi
+

k∑
j=1

µj
∂gj = 0, for all i = 1, ..., n,
∂xi

∑k

µjgj = 0
j=1

Note: The last constraint implies that

gj(x∗) < 0 → µj = 0

µj > 0 → gj(x∗) = 0.
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Continuous Variables and Objective Numerical methods

Continuous Variables
Inequality constrained

Problem: In most cases, the KKT conditions are
impossible to solve analytically. Therefore numerical
methods are needed.

No general method is guaranteed to always work
because “nonlinear” is too broad a category.

• Specialized methods: it is sometime possible to develop a
solution technique that works very well for specific problems
(eg, J quadratic, h, g linear).
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Continuous Variables and Objective Numerical methods

Continuous Variables
Inequality constrained

• Feasible directions: Take steps in a feasible direction that
will reduce the cost.

? Issue: hard to get the feasible direction when
constraints are not linear. Some surfaces will be curved.

• Gradient Projection: project gradient onto the plane tangent
to the constraint set. Move in that direction a short distance
and then move back to the constraint surface.
? Issues: how short a distance? And how do you get back

to the constraint surface?
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Continuous Variables and Objective Numerical methods

Continuous Variables
Inequality constrained

• Penalty Methods:
1. Transform problem into an unconstrained problem such

as

min J̄(x) = J(x) +KF (h(x), g(x))

where F (h(x), g(x)) is positive if h(x) 6= 0 or any
component of g(x) is positive.

2. Solve the problem with small positive K and then
increase K. The solution for each K is a starting guess
for the problem with the next K.

? Issues: Intermediate solutions are usually not feasible;
and problem gets hard to solve as K increases.
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Continuous Variables and Objective Software: Caveat Emptor!!

Continuous Variables
Inequality constrained

• There is much software available for optimization. However,
use it with care!! There are always problems that can defeat
any given method. If you use such software, don’t assume
that the answer is correct. Check it!!!

? Look at it carefully. Make sure it is intuitively
reasonable.

? Do a sensitivity analysis. Vary parameters by a little bit
and make sure the solution changes by a little bit. If
not, find out why!
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Continuous Variables and Objective Linear Programming

Linear Programming
• Definition: A special case of nonlinear

programming in which the objective and the
constraints are all linear.

• Many practical applications.

• Efficient solution techniques are available that
exploit the linearity.

• Software exists for very large problems.
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Continuous Variables and Objective Example

Linear Programming
Example

Two machines are available 24 hours per day. They are both
required to make each of two part types. No time is lost for
changeover. The times (in hours) required are:

Machine
Part 1 2

1 1 2
2 3 4

What is the maximum number of Type 1’s we can make in 1000
hours given that the parts are produced in a ratio of 2:1?
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Continuous Variables and Objective Example

Linear Programming
Formulation

Let U1 be the number of Type 1’s produced and let U2 be the
number of Type 2’s. Then the number of hours required of
Machine 1 is

U1 + 3U2

and the number of hours required of Machine 2 is

2U1 + 4U2

and both of these quantities must be less than 1000.
Also,

U1 = 2U2.
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Continuous Variables and Objective Example

Linear Programming
Formulation

Or,

maxU1

subject to
U1 + 3U2 ≤ 1000

2U1 + 4U2 ≤ 1000
U1 = 2U2

U1 ≥ 0; U2 ≥ 0
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Continuous Variables and Objective Example

Linear Programming
Graphical representation

U1

U2

0

250

500

750

0 250 500 750 1000

2U1+4U2=1000

U1+3U2=1000

U1=2U2

A

B
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Continuous Variables and Objective General formulation

Linear Programming
Canonical form — subscript notation

Let x ∈ Rn, A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

n

min
x

∑
cjxj

j=1

subject to

∑n

aijxj = bi, i = 1, . . . ,m
j=1

xj ≥ 0, j = 1, . . . , n
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Continuous Variables and Objective General formulation

Linear Programming
Canonical form — matrix/vector notation

Or,

min cTx
x

subject to

Ax = b

x ≥ 0

Here, ≥ is interpreted component-wise.

This is the standard or canonical form of the LP.
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Continuous Variables and Objective General formulation

Linear Programming
Example

All LPs can be expressed in this form. The example can be written

min(−1)U1

subject to

U1 + 3U2 + U3 = 1000
2U1 + 4U2 + U4 = 1000

U1 − 2U2 = 0
U1 ≥ 0, U2 ≥ 0, U3 ≥ 0, U4 ≥ 0

in which U3 and U4 are slack variables . Here, they represent the
idle times of Machine 1 and Machine 2.
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Continuous Variables and Objective Slack variables

Linear Programming
Slack variables

To put an LP in equivalent canonical form: for every
constraint of the form

n

aijxj
j=1

≤ bi

define a new variable

∑
xk and replace this constraint with

∑n
aijxj + xk = bi

j=1

xk ≥ 0
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Continuous Variables and Objective Slack variables

Linear Programming
Graphical representation

For this constraint set,

x

x
3

2

x
1

there are 3 variables, no equality
constraints, and (at least) 7 inequality
constraints (not counting xi ≥ 0).

The LP can be transformed into one with 10 variables, (at least) 7 equality
constraints, and no inequalities (except for xi ≥ 0).

Why “at least”?
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Continuous Variables and Objective Simplex

Linear Programming
Graphical representation

x

x
3

2

x
1

This set is called a polyhedron or a simplex .
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Continuous Variables and Objective Definitions

Linear Programming
Definitions

If x satisfies the constraints, it is a feasible solution .

If x is feasible and it minimizes cTx, it is an optimal
feasible solution .
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Continuous Variables and Objective Geometry

Linear Programming
Graphical representation

X
1

Objective −− direction of decrease

Lines of 

constant objective

Optimum

Ineffective constraints

X
2

Feasible Region
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Continuous Variables and Objective Special Cases

Linear Programming
Cases

• Problem could be infeasible — no feasible set —
no solution.

• Feasible set could be unbounded.
? Minimum of objective could be unbounded (−∞) —

infinite solution.

• Effective constraints could be non-independent —
adds complexity to the solution technique.

• c vector could be orthogonal to the boundary of
the feasible region — infinite number of solutions.
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Continuous Variables and Objective Non-unique solutions

Linear Programming
Cases

x

x
3

2

x
1

Optimal Edge x

x
3

2

x
1

Optimal Face
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Continuous Variables and Objective Basic Solutions

Linear Programming
Basic Solutions

Assume that there are more variables than equality constraints
(that n > m) and that matrix A has rank m.

Let AB be a matrix which consists of m columns of A. It is square
(m×m). Choose columns such that AB is invertible.

Then A can be written

A = (AB, AN)

in which AB is the basic part of A. The non-basic part, A
the

N , is
rest of A.

Correspondingly, x =
(
xB .
xN
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Continuous Variables and Objective Basic Solutions

Linear Programming
Basic Solutions

Then Ax = ABxB + ANxN = b,
or xB = A−1

B (b− ANxN).
Suppose xN = 0. Then xB = A−B

1b.
1

If b
x A−1

−
= A

B B b ≥ 0 then x =
(

B

0

)
is feasible and x

is a basic feasible solution.
• Geometrically: basic feasible solutions are corners of
the constraint set. Each corner corresponds to a
different AB.
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Continuous Variables and Objective The Fundamental Theorem

Linear Programming
The Fundamental Theorem

• If there is a feasible solution, there is a basic
feasible solution.

• If there is an optimal feasible solution, there is an
optimal basic feasible solution.
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Continuous Variables and Objective The Simplex Method

Linear Programming
The Simplex Method

• Since there is always a solution at a corner (when the
problem is feasible and there is a bounded solution), search
for solutions only on corners.

• At each corner, determine which adjacent corner improves
the objective function the most. Move there. Repeat until no
further improvement is possible.

• Moving to an adjacent corner is equivalent to interchanging
one of the columns of AB with one of the columns of AN .
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Continuous Variables and Objective The Simplex Method

Linear Programming
Reduced Cost

Choose a feasible basis. The LP problem can be written

min cT
Bx

T
B + cNxN

subject to
ABxB + ANxN = b

xB ≥ 0, xN ≥ 0

We can solve the equation for xB and get

1xB = A−B (b− ANxN)
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Continuous Variables and Objective The Simplex Method

Linear Programming
Reduced Cost

If we eliminate xB, the problem is

min
(
cT

N − cT
BA
−
B

1AN

)
xN

subject to

A−1 1
B ANxN ≤ A−B b

xN ≥ 0

This is an LP (although not in standard form). For x = 0 to be a
feasible solution, we must have

N

xB = A−1
B b ≥ 0
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Continuous Variables and Objective The Simplex Method

Linear Programming
Reduced Cost

Define the reduced cost cT
R = cT

N − cT 1

of are non-negative,
BA
−
B AN . If all components

cR xN = 0 is optimal.

Very simplified explanation of the simplex method:

• Move to an adjacent corner by taking one variable out of the
basis and replacing it by one not currently in the basis.

• Add to the basis the column corresponding to the most
negative element of cR.

• Determine which element of the basis would decrease the
cost most if it replaced by the new column.

• Stop when no elements of cR are negative.
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Continuous Variables and Objective The Simplex Method

Linear Programming
Reduced Cost

Note: if some elements of cR are 0 and the rest are
positive, there are many solutions.
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Continuous Variables and Objective Sensitivity Analysis

Linear Programming
Sensitivity Analysis

Suppose A, b, or c change by a little bit to A′, b′, and c′.
Then the optimal solution may change. Cases:
• The basic/non-basic partition remains optimal.

That is, the reduced cost vector based on the old
partition remains all non-negative. The solution
changes by a little bit.

• Some elements of the reduced cost go to 0. In that
case, there are many solutions.
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Continuous Variables and Objective Sensitivity Analysis

Linear Programming
Sensitivity Analysis

• Some elements of the reduced cost vector (according to the
current partition) become negative. In that case, the basis
must change and the solution moves to a new corner. This
could mean there is a large change in the solution.

x

x
3

2

x
1

Old Optimum

New Optimum
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Continuous Variables and Objective Sensitivity Analysis

Linear Programming
Shadow price

If the optimal value of the LP is J = cTx∗, the shadow
price of constraint j is

∂J

∂bj

Interpretation: You should be willing to pay ∂J
δbj to

∂b
increase the right hand side bj of constraint j by

j

δbj.
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Continuous Variables and Objective Applications

Linear Programming
Network Problems

b

b

b

b

b

b

b

b

i

jm
1 1

j
2

3
j

j
4

m
2

3
m
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Continuous Variables and Objective Applications

Linear Programming
Network Problems

b

b

b

b

b

b

b

b

i

jm
1 1

j
2

3
j

j
4

m
2

3
m

• Let bki be the flow introduced at node i destined
for node k.

• Let xkij be the flow on link (i, j) destined for node
k. xkij = 0 if there is no direct link from i to j.

• Let ckij be the cost per unit of flow on link (i, j) for
flow destined for node k. ckij =∞ if there is no
direct link from i to j.
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Continuous Variables and Objective Applications

Linear Programming
Conservation of flow

b

b

b

b

b
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j

j
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2

3
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Flow into a node = flow out of the node.∑
xk + bkmi i = x

m6=i

∑
k
ij for i

j 6=i

6= k
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Continuous Variables and Objective Applications

Linear Programming
Network LP

min
∑

ckijx
k
ij

i,j,k

∑
xk k
mi + bi = x all

m=6 i

∑
k
ij for j, k; for all i = k

j i

6
=6

xkij ≥ 0 for all i, j, k
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Dynamic Programming

Dynamic Programming

• Optimization over time.

? Decisions made now can have costs or benefits that
appear only later, or might restrict later options.

• Deterministic or stochastic.

• Examples: investment, scheduling, aerospace
vehicle trajectories.

• Elements: state, control, objective, dynamics,
constraints.
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Dynamic Programming Discrete time, Deterministic

Dynamic Programming
Special Class of NLPs

Objective: J(x(0)) =

min
u(i),

0≤i≤T−1

∑T−1

L(x(i), u(i)) + F (x(T ))
i=0

such that

Dynamics: x(i+ 1) = f(x(i), u(i), i); x(0) specified
Constraints: h(x(i), u(i)) = 0; g(x(i), u(i)) ≤ 0.
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Dynamic Programming Continuous time, Deterministic

Dynamic Programming
Special Class of NLPs

Objective: J(x(0)) =

min
∫ T

g(x(t), u(t))dt+ F (x(T ))
u(t), 0

0≤t≤T

such that

Dynamics: dx(t) = f(x(t), u(t), t); x(0) specified
dt

Constraints: h(x(t), u(t)) = 0; g(x(t), u(t)) ≤ 0.
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Other topics

Other topics

• Integer programming/combinatorial optimization

• Stochastic dynamic programming

• Heuristics and meta-heuristics
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