MIT 2.853/2.854 Introduction to Manufacturing Systems Material Requirements Planning

Lecturer: Stanley B. Gershwin

Copyright © 2002-2006 Stanley B. Gershwin.

MRP Overview

- Primary source: Factory Physics by Hopp and Spearman.
- *Basic idea:* Once the final due date for a product is known, and the time required for each production step is known, then intermediate due dates and material requirement times can be determined.
- Original goal: To determine when material for production is required.

MRP Overview

Demand

• ... from outside the system is *independent* demand.

Demand

• ... for components or raw material is *dependent* demand.

Before MRP, buyers were not synchronized with producers.

Planning Algorithm

MRP Overview

- Start at the due date for a finished product (or end item) (T_k) .
- Determine the last operation, the time required for that operation (t_{k-1}) , and the material required for that operation.
- The material may come from outside, or from earlier operations inside the factory.
- Subtract the last operation time from the due date to determine when the last operation should start.

Copyright © 2006 Stanley B. Gershwin.

MRP Overview

Planning Algorithm

$$T_{k-1} = T_k - t_{k-1}$$

- The material required must be present at that time.
- Continue working backwards.
- However, since more than one component may be needed at an operation, the planning algorithm must work its way backwards along each branch of a tree — the <u>bill of materials</u>.

MRP Overview

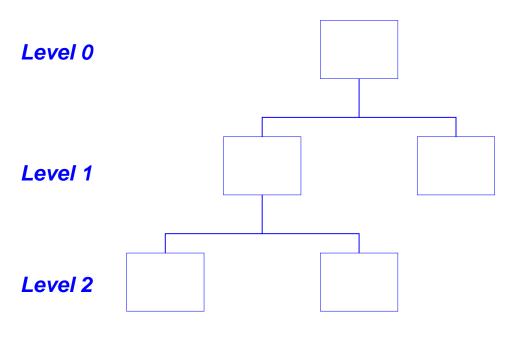
Planning Algorithm

Time

- In some MRP systems, time is divided into *time* buckets — days, weeks, or whatever is convenient.
- In others, time may be chosen as a continuous variable.

Discussion

MRP Overview


- What assumptions are being made here ...
 - ★... about predictability?
 - *... about capacity?
- How realistic are those assumptions?
- Is it more flexible to use time buckets or continuous time?

Jargon

MRP Overview

- Push system: one in which material is loaded based on planning or forecasts, not on *current* demand.
 MRP is a push system.
- *Pull system:* one in which production occurs in response to the consumption of finished goods inventory by demand.
- Which is better?

Bill of Materials (BOM)

- Top level is end item.
- Items are given a *low-level code* corresponding to the lowest level they appear at, for any end item in the factory.

The BOM must be maintained as the product mix changes.

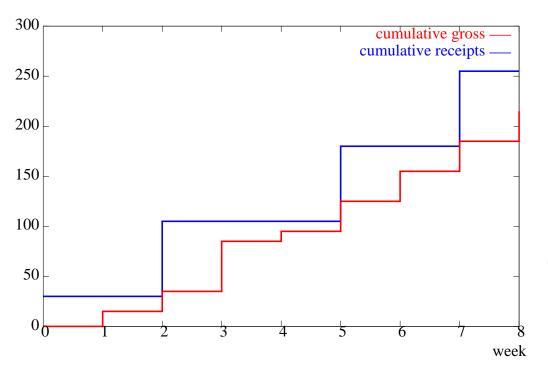
- Information concerning independent demand.
- Gross requirements: What must be delivered in the future, and when.
- On-hand inventory: Finished good already available.
- Net requirements: (Gross requirements) (On-hand inventory).

Netting	9
---------	---

	Week								
	1	2	3	4	5	6	7	8	
Gross requirements		20	50	10	30	30	30	30	
Projected on-hand 30	15	-5							
Net requirements	0	5	50	10	30	30	30	30	

- 15 of the initial 30 units of inventory are used to satisfy Week 1 demand.
- The remaining 15 units are 5 less than required to satisfy Week 2 demand.

Example


Lot Sizing

- Lot sizes are 75. The first arrival must occur in Week 2.
- 75 units last until Week 4, so plan arrival in Week 5.
- Similarly, deliveries needed in Weeks 5 and 7.

		Week								
	1	2	3	4	5	6	7	8		
Gross requirements	15	20	50	10	30	30	30	30		
Cumulative gross		35	85	95	125	155	185	215		
Planned order receipts 30) 0	75	0	0	75	0	75	0		
Cumulative receipts		105	105	105	180	180	255	255		

Example

Cumulatives

Material requirements are determined by considering whether inventory would otherwise become negative.

Example

Time Phasing

• Lead times are 1 week. Therefore, order *release* must occur one week before delivery is required.

	Week									
	1	2	3	4	5	6	7	8		
Gross requirements	15	20	50	10	30	30	30	30		
Cumulative gross	15	35	85	95	125	155	185	215		
Planned receipts 30	0	75	0	0	75	0	75	0		
Cumulative receipts	30	105	105	105	180	180	255	255		
Planned release	75	0	0	75	0	75	0	0		

Example

BOM Explosion

- Now, do exactly the same thing for all the components required to produce the finished goods (level 1).
- Do it again for all the components of those components (level 2).
- Et cetera.

Inputs

Data

- Master Production Schedule demand quantities and due dates
- Item Master File for each part number: description, BOM, lot-sizing, planning lead times
- Inventory Status finished goods, work-in-progress

Outputs

Data

- Planned order releases
- Change notices
- *Exception reports* discrepancies, consequences of unexpected events

Definitions

Define

* D_t = Demands, or gross requirements for week t* S_t = Quantity that will be completed in week t* I_t = Projected finished inventory in week t* N_t = Net requirements in week t

Netting

• Inventory dynamics: Starting with t = 1 (where t = 0 means *now*) and incrementing t by 1,

$$I_t = I_{t-1} - D_t$$
, as long as $I_{t-1} - D_t \ge 0$

$$I_t = I_{t-1} - D_t + S_t, ext{ if } I_{t-1} - D_t < 0$$

where S_t is minimal amount needed to make the inventory positive, which is consistent with lot-sizing requirements.

Netting

• Net requirements: Let t^* be the first time when $I_{t-1} - D_t < 0$. Then,

$$N_t = \left\{egin{array}{ll} 0 & ext{if} \ t < t^* \ I_{t-1} - D_t < 0 & ext{if} \ t = t^* \ D_t & ext{if} \ t > t^* \end{array}
ight.$$

- From net requirements, we calculate required production (scheduled receipts) $S_t, t > t^*$.
- S_t is adjusted for new orders or new forecasts.
- Then procedure is repeated for the next T^* .

Netting

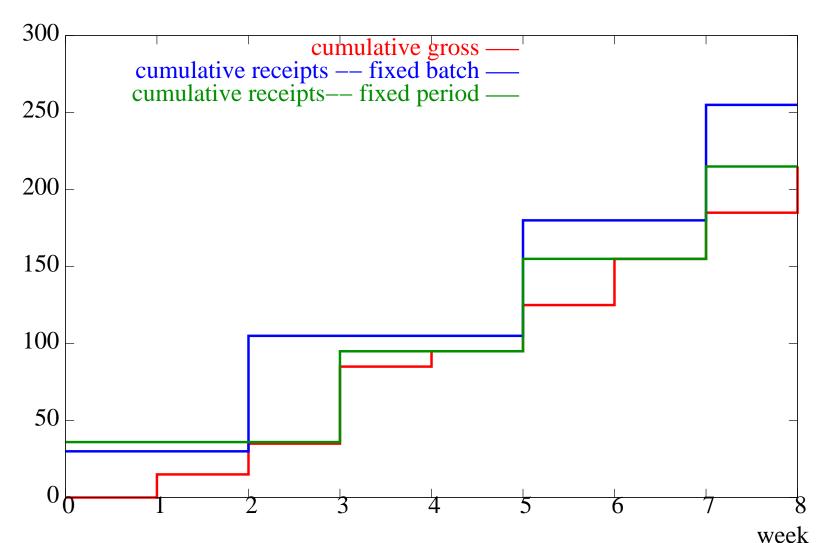
Example

		Week							
	1	1	2	3	4	5	6	7	8
Gross requirements		15	20	50	10	30	30	30	3(
Projected on-hand	20	5	5	55	45	15	-15		
Adjusted scheduled receipts			20	100					
Net requirements		0	0	0	0	0	15	30	30

Example

	Week								
	1	2	3	4	5	6	7	8	
Gross requirements	15	20	50	10	30	30	30	30	
Projected on-hand 20	5	5	55	45	15	-15			
Net requirements	0	0	0	0	0	15	30	30	
Scheduled receipts*	10	10		100					
Adjusted scheduled receipts	0	20	100						

* original plan


- The 10 units planned for week 1 were *deferred* to week 2.
- The 100 units planned for week 4 were *expedited* to week 3.

Lot Sizing

Possible rules:

- Lot-for-lot: produce in a period the net requirements for that period. *Maximum* setups.
- *Fixed order period:* produce in a period the net requirements for *P* periods.
- *Fixed order quantity:* always produce the same quantity, whenever anything is produced. EOQ formula can be used to determine lot size.

Which satisfy the Wagner-Whitin property?

Lot Sizing

Copyright © 2006 Stanley B. Gershwin.

BOM Explosion

- After scheduling production for all the top level (Level 0) items, do the same for Level 1 items.
- The planned order releases for Level 0 are the gross requirements for Level 1.
- Do the same for Level 2, 3, etc.

Uncertainty/Variability

Reality

- MRP is deterministic but reality is not. Therefore, the system needs *safety stock* and *safety lead times*.
- Safety stock protects against quantity uncertainties.
 - You don't know how much you will make, so plan to make a little extra.
- Safety lead time protects against timing uncertainties.
 - * You don't know exactly when you will make it, so plan to make it a little early.

Uncertainty/Variability

Safety Stock

- Instead of having a minimal planned inventory of zero, the (positive) safety stock is the planned minimal inventory level.
- Whenever the actual minimal inventory differs from the safety stock, adjust planned order releases accordingly.

Uncertainty/Variability

Safety Lead Time

• Add some extra time to the planned lead time.

Copyright © 2006 Stanley B. Gershwin.

Uncertainty/Variability

Reality

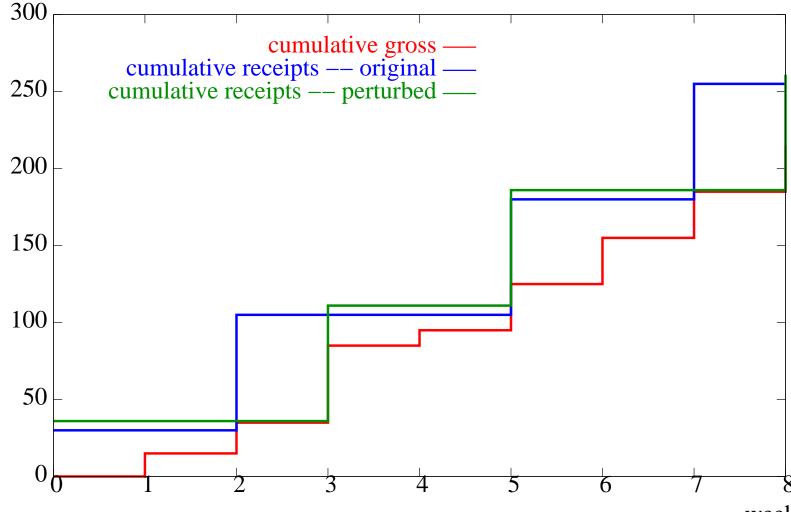
Yield Loss

- Yield = expected fraction of parts started that are successfully produced.
- Actual yield is random.
- If you need to end up with N items, and the yield is y, start with N/y.
- \bullet However, the actual production may differ from N, so safety stock is needed.

Other problems

Reality

- Capacity is actually finite.
- Planned lead times tend to be long (to compensate for variability).
 - * Also, workers should start work on a job as soon as it is released, and relax later (usually possible because of safety lead time). Often, however, they relax first, so if a disruption occurs, the job is late.


Other problems

Nervousness

- Nervousness drastic changes in schedules due to small deviations from plans — (chaos?)
- Nervousness results when a deterministic calculation is applied to a random system, and local perturbations lead to global changes.

Other problems

Nervousness

week

Copyright © 2006 Stanley B. Gershwin.

Other problems

Nervousness

- Possible consequences:
 - Drastic changes in plans for the near future, which will confuse workers;
 - * Excessive setups, consuming excess expense or capacity.
- Solution: Freeze the early part of the schedule (ie, the near future). Do not change the schedule even if there is a change in requirements; or do not accept changes in requirements.
 - ***** *But:* What price is paid for freezing?

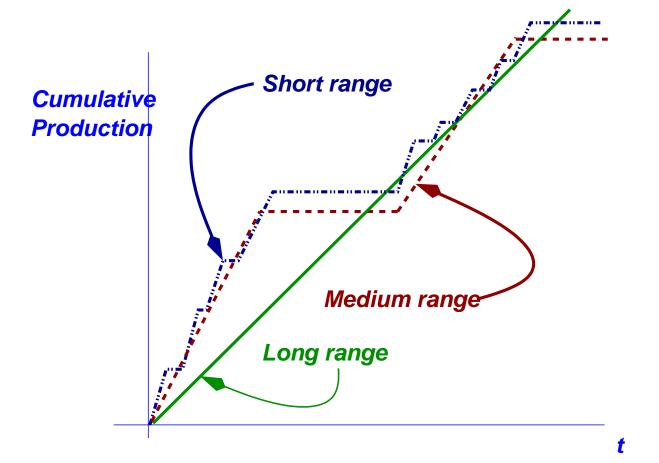
Fundamental problem

Reality

- MRP is a solution to a problem whose formulation is based on an unrealistic model, one which is
 - ★ deterministic
 - ★ infinite capacity

• As a result,

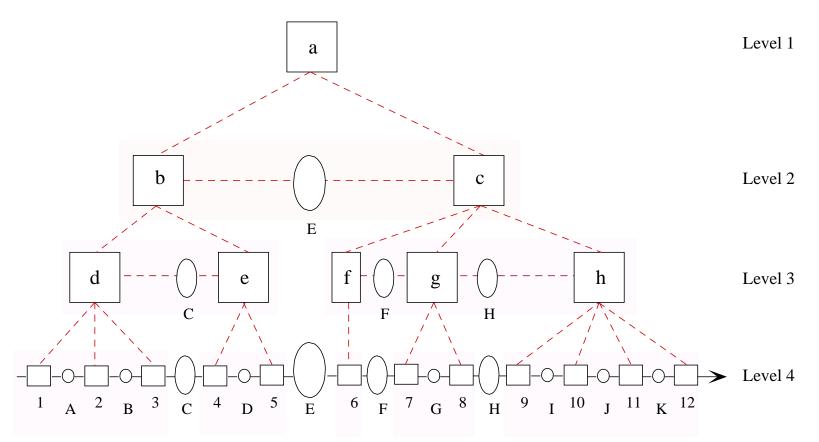
- t frequently produces non-optimal or infeasible schedules, and
- t requires constant manual intervention to compensate for poor schedules.
- On top of that, nervousness amplifies inevitable variability.


MRP II

Manufacturing Resources Planning

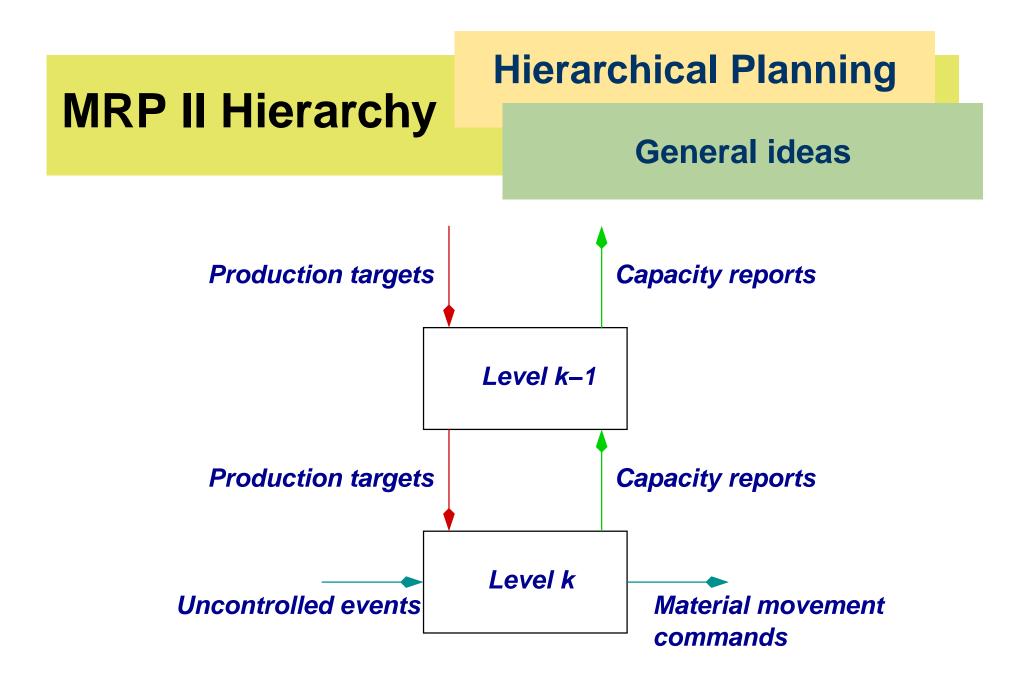
- ***** MRP, and correction of some its problems,
- * demand management,
- ★ forecasting,
- * capacity planning,
- master production scheduling,
- * rough-cut capacity planning,
- * capacity requirements planning (CRP),
- * dispatching,
- ★ input-output control.

Hierarchical Planning


and Scheduling

Hierarchical Planning

and Scheduling


Planning/Scheduling/Control Hierarchy

Hierarchical Planning

General ideas

- Higher levels deal with longer time scales and more of the system (scope).
- Higher levels use more aggregated (coarse-grained) models.
- Higher levels send *production targets* down to lower levels.
 - ★ Each level refines the target for the level below, with reduced time scale and reduced scope.
 - ***** The bottom level actually implements the schedule.

Hierarchical Planning

Long-Range Planning

- Range: six months to five years.
- Recalculation frequency: 1/month to 1/year.
- Detail: part family.
- Forecasting
- Resource planning build a new plant?
- Aggregate planning determines rough estimates of production, staffing, etc.

Hierarchical Planning

Intermediate-Range Planning

- Demand management converts long range forecast and actual orders into detailed forecast.
- Master production scheduling
- Rough-cut capacity planning capacity check for feasibility.
- CRP better than rough cut, but still not perfect. Based on infinite capacity assumption.

Hierarchical Planning

Short-Term Control/Scheduling

- Daily Plan
 - * Production target for the day
- Shop Floor Control
 - * Job dispatching which job to run next?
 - * Input-output control release
 - ***** Often based on simple rules
 - * Sometimes based on large deterministic mixed (integer and continuous variable) optimization

Hierarchical Planning

Issues

- The high level and low level models sometimes don't match.
 - The high level aggregation is not done accurately.
 Actual events make the production target obsolete.
 Consequence: Targets may be infeasible or too conservative.
- The short-term schedule may be recalculated too frequently.
 - ***** Consequence: Instability.

MIT OpenCourseWare https://ocw.mit.edu

2.854 / 2.853 Introduction To Manufacturing Systems Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.