MIT 2.853/2.854 Introduction to Manufacturing Systems

Multi-Stage Control and Scheduling

Lecturer: Stanley B. Gershwin

Copyright © 2002-2016 Stanley B. Gershwin.

Definitions

 Events may be controllable or not, and predictable or not.

	controllable	uncontrollable
predictable	loading a part	lunch
unpredictable	???	machine failure

Definitions

- Scheduling is the selection of times for future controllable events.
- Ideally, scheduling systems should deal with all controllable events, and not just production.
 - ★ That is, they should select times for operations, set-up changes, preventive maintenance, etc.
 - ★ They should at least be aware of set-up changes, preventive maintenance, etc.when they select times for operations.

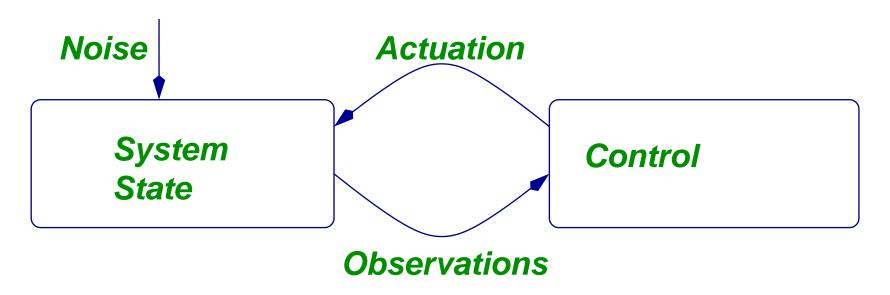
Definitions

 Because of recurring random events, scheduling is an on-going process, and not a one-time calculation.

 Scheduling, or shop floor control, is the bottom of the scheduling/planning hierarchy. It translates plans into events.

Control Paradigm

Definitions



This is the general paradigm for control theory and engineering.

Control Paradigm

Definitions

In a factory,

- State: distribution of inventory, repair/failure states of machines, etc.
- Control: move a part to a machine and start operation; begin preventive maintenance, etc.
- Noise: machine failures, change in demand, etc.

Release and Dispatch

Definitions

- Release: Authorizing a job for production, or allowing a raw part onto the factory floor.
- Dispatch: Moving a part into a workstation or machine.
- Release is more important than dispatch. That is, improving release has more impact than improving dispatch, if both are reasonable.

Requirements

Definitions

Scheduling systems or methods should ...

- deliver good factory performance.
- compute decisions quickly, in response to changing conditions.

Performance Goals

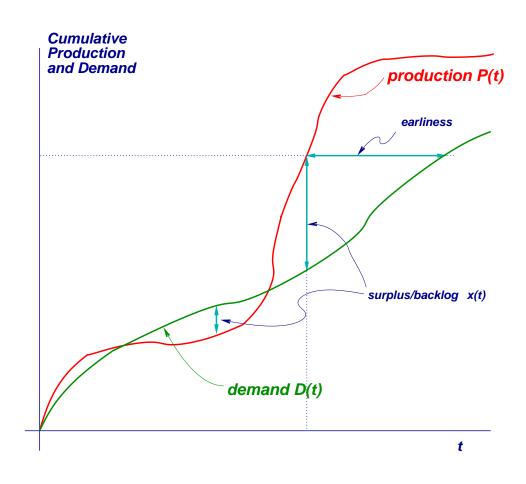
- To minimize inventory and backlog.
- To maximize probability that customers are satisfied.
- To maximize predictability (ie, minimize performance variability).

Performance Goals

- For MTO (Make to Order)
 - ★ To meet delivery promises.
 - ★ To make delivery promises that are both soon and reliable.
- For MTS (Make to Stock)
 - *to have FG (finished goods) available when customers arrive; and
 - ★ to have minimal FG inventory.

Objective of Scheduling

Performance Goals



Objective is to keep cumulative production close to cumulative demand.

Difficulties

Performance Goals

- Complex factories
- Unpredictable demand (ie D uncertainty)
- Factory unreliability (ie P uncontrollability)

- Simple rules heuristics
 - ⋆ Dangers:
 - * Too simple may ignore important features.
 - * Rule proliferation.
- Detailed calculations
 - ⋆ Dangers:
 - * Too complex impossible to develop intuition.
 - * Rigid had to modify may have to lie in data.

Detailed calculations

- Deterministic optimization.
 - * Large linear or mixed integer program.
 - * Re-optimize periodically or after important event.
- Scheduling by simulation.

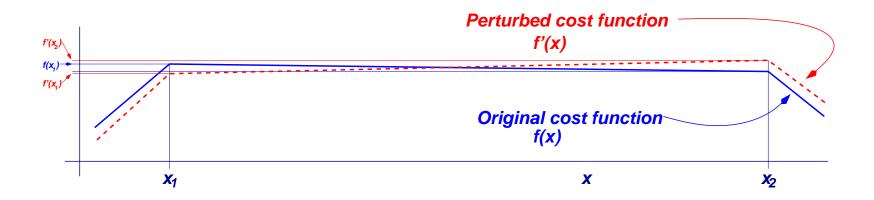
Detailed calculations

Dangers

- Nervousness or scheduling volatility (fast but inaccurate response):
 - *The optimum may be very flat. That is, many very different schedule alternatives may produce similar performance.
 - *A small change of conditions may therefore cause the optimal schedule to change substantially.

Detailed calculations

Dangers



- ullet Original optimum performance was $f(x_1)$.
- New optimum performance is $f'(x_2)$.
- If we did not change x, new performance would be $f'(x_1)$.
- ullet Benefit from change: $f'(x_2) f'(x_1)$, small.
- ullet Cost of change: x_2-x_1 , large.

Detailed calculations

Dangers

- Slow response:
 - * Long computation time.
 - ★ Freezing.
- Bad data:
 - * Factory data is often very poor, especially when workers are required to collect it manually.
 - * GIGO

Characteristics

Heuristics

- A heuristic is a proposed solution to a problem that seems reasonable but cannot be rigorously justified.
- In reentrant systems, heuristics tend to favor older parts.
 - ★ This keeps inventory low.

Heuristics

Characteristics

Desirable Characteristics

- Good heuristics deliver good performance.
- Heuristics tend to be simple and intuitive.
 - * People should be able to understand why choices are made, and anticipate what will happen.
 - ★ Relevant information should be simple and easy to get access to.
 - * Simplicity helps the development of simulations.
- Good heuristics are insensitive to small perturbations or errors in data.

Characteristics

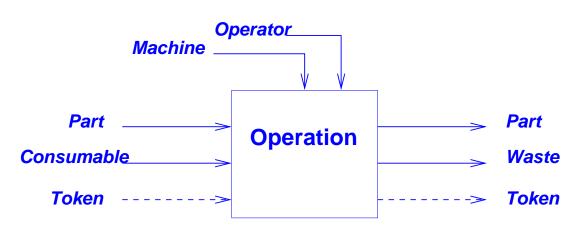
Heuristics

Decentralization

- It is often desirable for people to make decisions on the basis of local, current information.
 - ★ Centralized decision-making is most often bureaucratic, slow, and inflexible.
- Most heuristics are naturally decentralized, or can be implemented in a decentralized fashion.

Heuristics

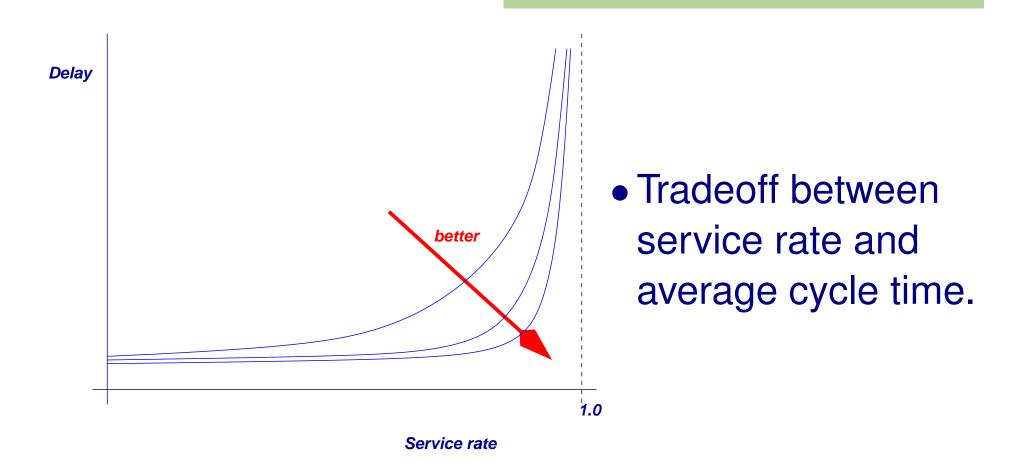
Performance evaluation



- An operation cannot take place unless there is a token available.
- Tokens authorize production.
- These policies can often be implemented either with finite buffer space, or a finite number of tokens. Mixtures are also possible.
- Buffer space could be shelf space, or floor space indicated with paint or tape.

Heuristics

Performance evaluation



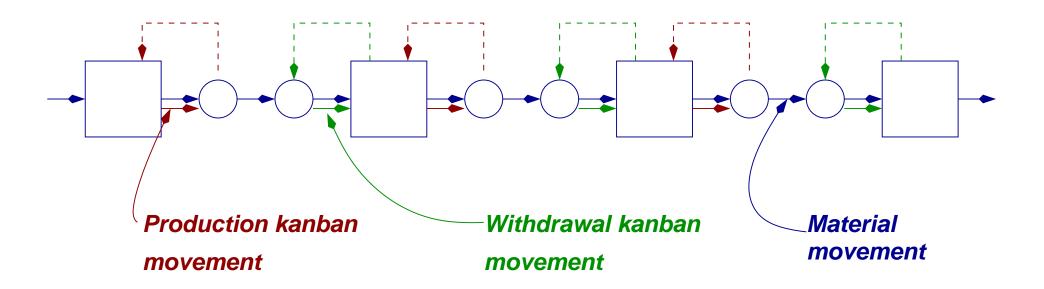
Heuristics

Finite buffer

- Buffers tend to be close to full.
- Sizes of buffers should be related to magnitude of disruptions.
- Not practical for large systems, unless each box represents a set of machines.

Heuristics

Kanban



- Performance slightly better than finite buffer.
- Sizes of buffers should be related to magnitude of disruptions.

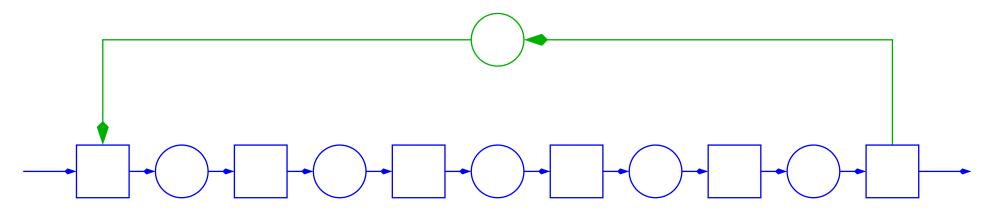
Heuristics

CONWIP

- Constant Work in Progress
- Variation on kanban in which the number of parts in an area is limited.
- When the limit is reached, no new part enters until a part leaves.
- Variations:
 - * When there are multiple part types, limit work hours or dollars rather than number of parts.
 - ⋆ Or establish individual limits for each part type.

Heuristics

CONWIP



- ullet If token buffer is not empty, attach a token to a part when M_1 starts working on it.
- ullet If token buffer is empty, do not allow part into M_1 .
- Token and part travel together until they reach last machine.
- When last machine completes work on a part, the part leaves and the token moves to the token buffer.

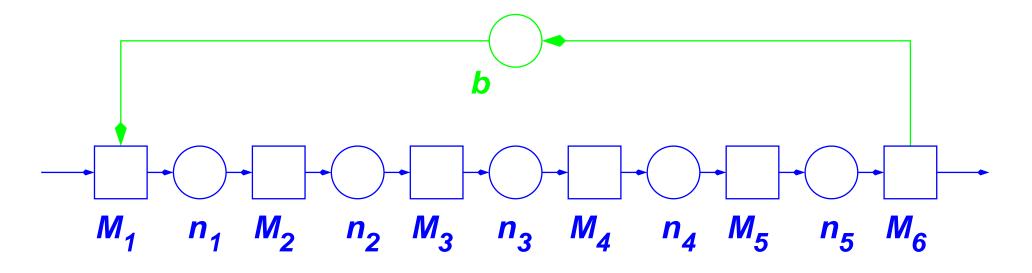
Heuristics

CONWIP

- Infinite material buffers.
- Infinite token buffer.
- Limited material population at all times.
- Population limit should be related to magnitude of disruptions.

Heuristics

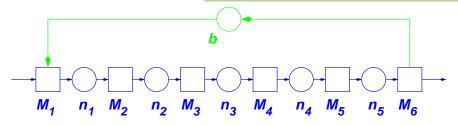
CONWIP



• Claim: $n_1 + n_2 + ... + n_5 + b$ is constant.

Heuristics

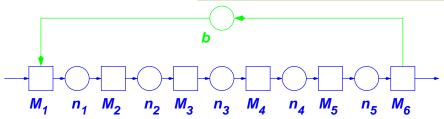
CONWIP Proof



- Define $C = n_1 + n_2 + ... + n_5 + b$.
- Whenever M_j does an operation, C is unchanged, j=2,...,5.
 - \star ... because n_{j-1} goes down by 1 and n_j goes up by 1, and nothing else changes.
- ullet Whenever M_1 does an operation, C is unchanged.
 - \star ... because b goes down by 1 and n_1 goes up by 1, and nothing else changes.

Heuristics

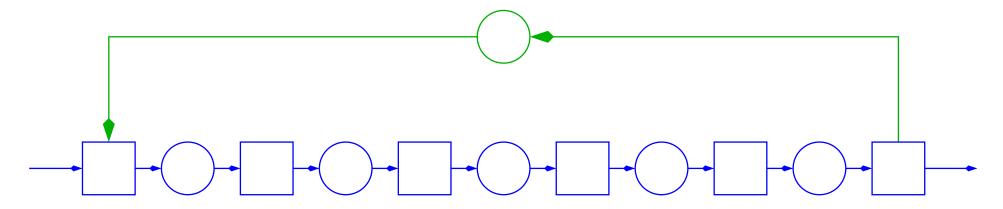
CONWIP Proof



- Whenever M_6 does an operation, C is unchanged.
 - \star ... because n_5 goes down by 1 and b goes up by 1, and nothing else changes.
- ullet Similarly for M_1 .
- That is, whenever *anything* happens, $C = n_1 + n_2 + ... + n_5 + b$ is unchanged.
- C is an invariant.
- C is the maximum population of the material in the system.

Heuristics

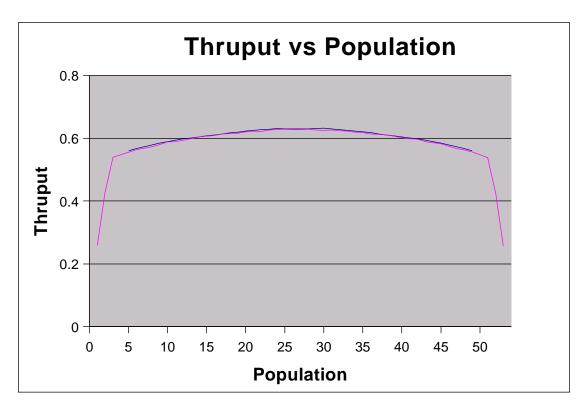
CONWIP/Kanban Hybrid



- Finite buffers
- Finite material population
- Limited material population at all times.
- Population and sizes of buffers should be related to magnitude of disruptions.

Heuristics

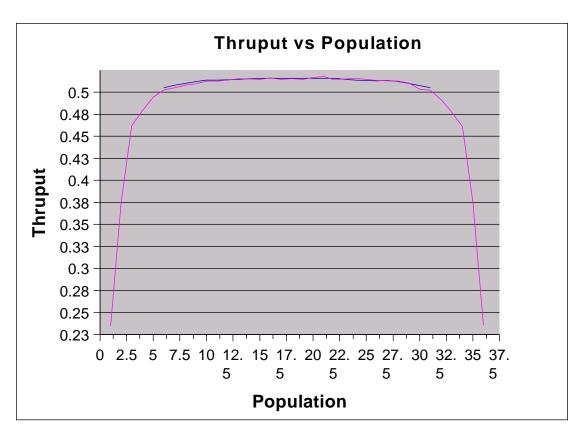
CONWIP/Kanban Hybrid



- Production rate as a function of CONWIP population.
- In these graphs, total buffer space (including for tokens) is finite.

Heuristics

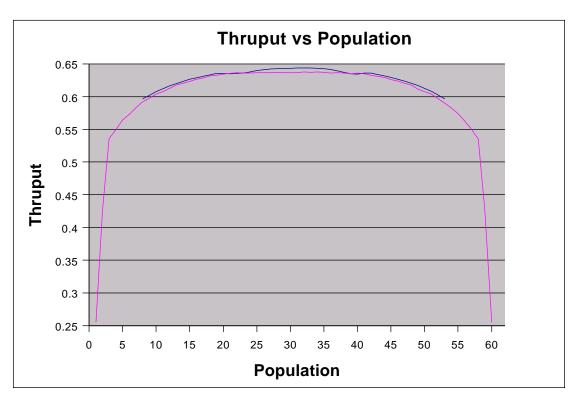
CONWIP/Kanban Hybrid



 Maximum production rate occurs when population is half of total space.

Heuristics

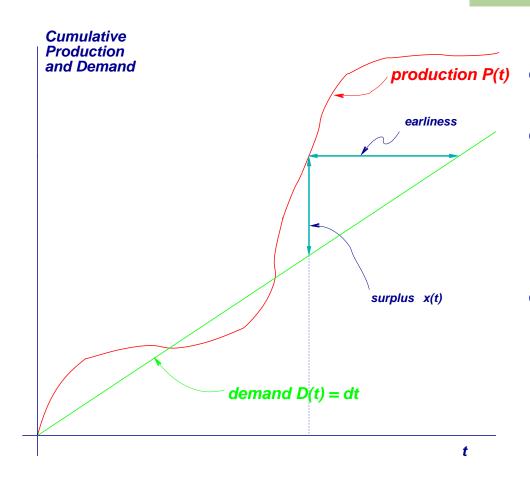
CONWIP/Kanban Hybrid



 When total space is infinite, production rate increases only.

Simple Policies

Hedging point



- production P(t) State: (x, lpha)
 - x = surplus = difference between cumulative production and demand.
 - α = machine state. α = 1 means machine is up; α = 0 means machine is down.

Simple Policies

Hedging point

- Control: u
- u =short term production rate.

$$\star$$
 if $\alpha = 1, 0 \le u \le \mu$;

$$\star$$
 if $\alpha = 0$, $u = 0$.

g(x)

Material/token policies

Hedging point

Objective function:

$$\min E \int_0^T g(x(t)) dt$$

$$g(x) = \left\{ egin{array}{l} g_+ x, ext{ if } x \geq 0 \ -g_- x, ext{ if } x < 0 \end{array}
ight.$$

Simple Policies

Hedging point

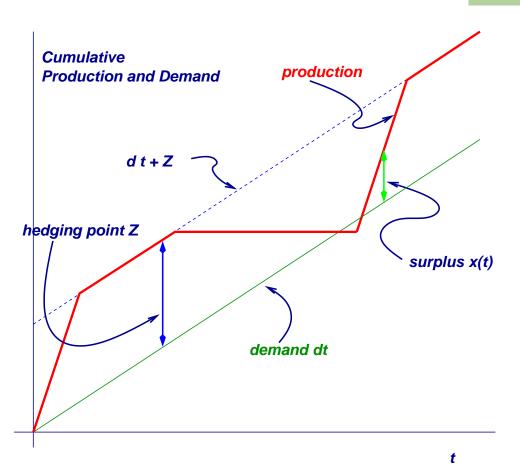
Dynamics:

$$\star \frac{dx}{dt} = u - d$$

- $\star \alpha$ goes from 0 to 1 according to an exponential distribution with parameter r.
- $\star \alpha$ goes from 1 to 0 according to an exponential distribution with parameter p.

Simple Policies

Hedging point



Solution:

- ullet if x(t)>Z, wait;
- if x(t) = Z, operate at demand rate d;
- ullet if x(t) < Z, operate at maximum rate μ .

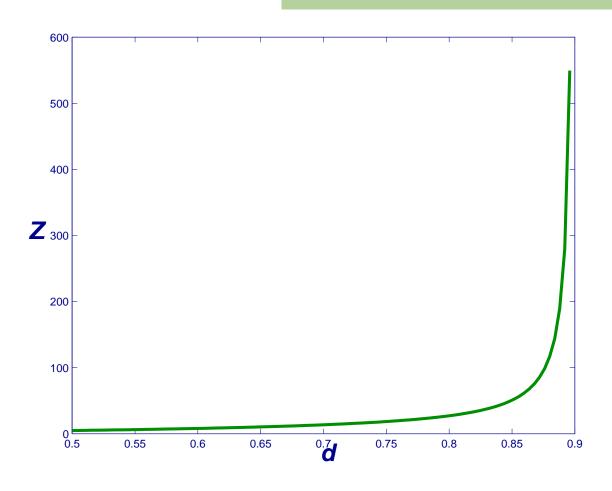
Simple Policies

Hedging point

- The hedging point Z is the single parameter.
- It represents a trade-off between costs of inventory and risk of disappointing customers.
- It is a function of d, μ , r, p, g_+ , g_- .

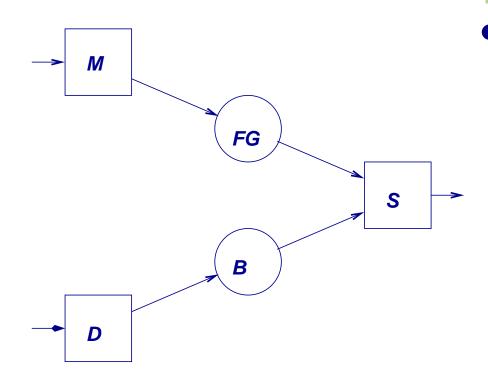
Simple Policies

Hedging point



Simple Policies

Hedging point



Operating Machine M
 according to the hedging
 point policy is equivalent to
 operating this assembly
 system according to a finite
 buffer policy.

Simple Policies

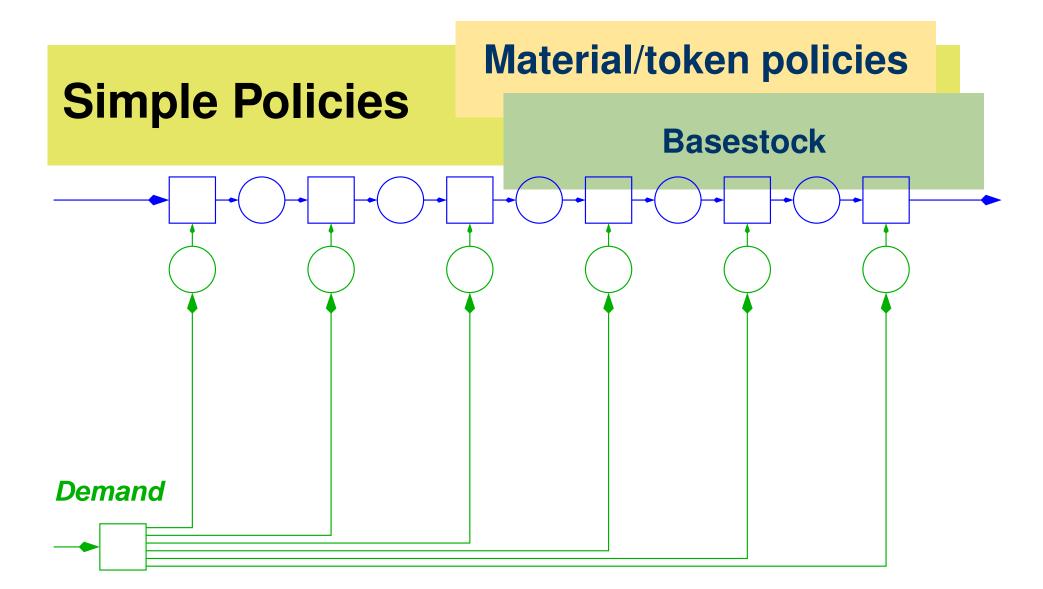
Hedging point

- ullet $oldsymbol{D}$ is a demand generator.
 - \star Whenever a demand arrives, D sends a token to B.
- S is a synchronization machine.
 - $\star S$ is perfectly reliable and infinitely fast.
- FG is a finite finished goods buffer.
- B is an infinite backlog buffer.

Simple Policies

Basestock

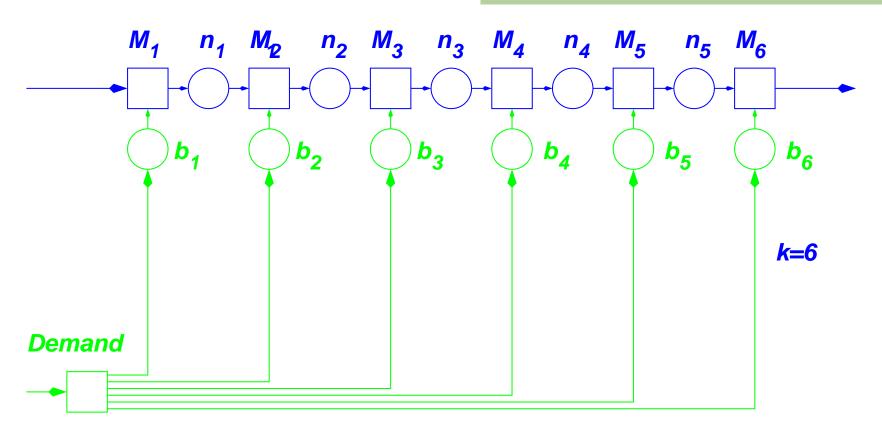
- Base Stock: the amount of material and backlog between each machine and the customer is limited.
- Deviations from targets are adjusted locally.



- Infinite buffers.
- Finite initial levels of material and token buffers.

Simple Policies

Basestock Proof



Claim: $b_j + n_j + n_{j+1} + ... + n_{k-1} - b_k, 1 \ge j \ge k$ remains constant at all times.

Simple Policies

Basestock Proof

- Consider $b_1 + n_1 + n_2 + ... + n_{k-1} b_k$
- When M_i does an operation (1 < i < k),
 - $\star n_{i-1}$ goes down by 1, b_i goes down by 1, n_i goes up by 1, and all other b_j and n_j are unchanged.
 - \star That is, $n_{i-1} + n_i$ is constant, and $b_i + n_i$ is constant.
 - * Therefore $b_1 + n_1 + n_2 + ... + n_{k-1} b_k$ stays constant.
- When M_1 does an operation, $b_1 + n_1$ is constant.
- When M_k does an operation, $n_{i-1} b_k$ is constant.
- Therefore, when *any* machine does an operation, $b_1 + n_1 + n_2 + ... + n_{k-1} b_k$ remains constant.

Simple Policies

Basestock Proof

- Now consider $b_j + n_j + n_{j+1} + ... + n_{k-1} b_k, 1 < j < k$
- When M_i does an operation, $i \geq j$, $b_j + n_j + n_{j+1} + ... + n_{k-1} b_k$ remains constant, from the same reasoning as for j=1.
- ullet When M_i does an operation, i < j, $b_j + n_j + n_{j+1} + \ldots + n_{k-1} b_k$ remains constant, because it is unaffected.

Simple Policies

Basestock Proof

- When a demand arrives,
 - $\star n_j$ stays constant, for all j, and all b_j increase by one.
 - * Therefore $b_j + n_j + n_{j+1} + ... + n_{k-1} b_k$ remains constant for all j.
- Conclusion: whenever any event occurs, $b_j+n_j+n_{j+1}+...+n_{k-1}-b_k$ remains constant, for all j.

Simple Policies

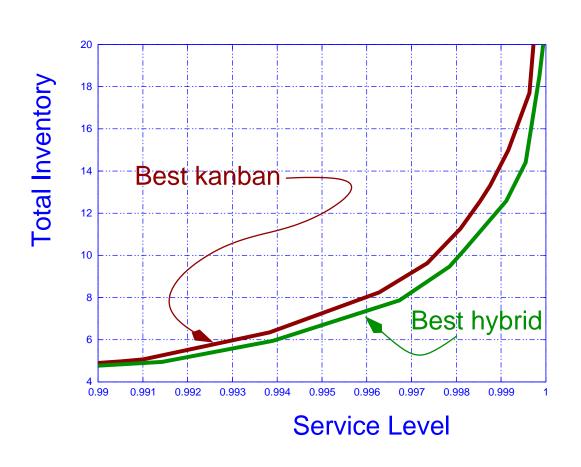
Comparisons



- Simulation of simple Toyota feeder line.
- We simulated all possible kanban policies and all possible kanban/CONWIP hybrids.

Simple Policies

Comparisons



 The graph indicates the best of all kanbans and all hybrids.

Simple Policies

Comparisons

More results of the comparison experiment: best parameters for service rate = .999.

Policy	Buffer sizes				Base stocks			
Finite buffer	2	2	4	10				
Kanban	2	2	4	9				
Basestock	∞	∞	∞	∞	1	1	1	12
CONWIP	∞	∞	∞	∞				15
Hybrid	2	3	5	15				15

Simple Policies

Comparisons

More results of the comparison experiment: performance.

Policy	Service level	Inventory			
Finite buffer	$0.99916 \pm .00006$	$15.82 \pm .05$			
Kanban	$0.99909 \pm .00005$	$15.62 \pm .05$			
Basestock	$0.99918 \pm .00006$	$14.60 \pm .02$			
CONWIP	$0.99922 \pm .00005$	$14.59 \pm .02$			
Hybrid	$0.99907 \pm .00007$	$13.93 \pm .03$			

Other policies

FIFO

- First-In, First Out.
- Simple conceptually, but you have to keep track of arrival times.
- Leaves out much important information:
 - ★ due date, value of part, current surplus/backlog state, etc.

Other policies

EDD

- Earliest due date.
- Easy to implement.
- Does not consider work remaining on the item, value of the item, etc..

Other policies

SRPT

- Shortest Remaining Processing Time
- Whenever there is a choice of parts, load the one with least remaining work before it is finished.
- Variations: include waiting time with the work time.
 Use expected time if it is random.

Other policies

Critical ratio

- Widely used, but many variations. One version:
 - Processing time remaining until completion
 - * Define CR = Due date Current time
 - * Choose the job with the highest ratio (provided it is positive).
 - ★ If a job is late, the ratio will be negative, or the denominator will be zero, and that job should be given highest priority.
 - ★ If there is more than one late job, schedule the late jobs in SRPT order.

Other policies

Least Slack

- This policy considers a part's due date.
- Define slack = due date remaining work time
- When there is a choice, select the part with the least slack.
- Variations involve different ways of estimating remaining time.

Other policies

Drum-Buffer-Rope

- Due to Eli Goldratt.
- Based on the idea that every system has a bottleneck.
- *Drum:* the common production rate that the system operates at, which is the rate of flow of the bottleneck.
- Buffer: DBR establishes a CONWIP policy between the entrance of the system and the bottleneck. The buffer is the CONWIP population.
- Rope: the limit on the difference in production between different stages in the system.
- But: What if bottleneck is not well-defined?

Conclusions

- Many policies and approaches.
- No simple statement telling which is better.
- Policies are not all well-defined in the literature or in practice.
- My opinion:
 - * This is because policies are not *derived* from first principles.
 - ★ Instead, they are tested and compared.
 - ★ Currently, we have little intuition to guide policy development and choice.

MIT OpenCourseWare https://ocw.mit.edu

2.854 / 2.853 Introduction To Manufacturing Systems Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.