2.853/2.854
 Introduction to Manufacturing Systems

Assignment 1^{1}
Problem 1 (10 points)
A white die and a red die are tossed. Both dice are perfectly balanced. Let w and r denote the numbers appearing of the top face of the white and red die, respectively.

1. What is the probability that $w=r$?
2. What is the probability that $w<r$?
3. What is the probability that $w=3$ given that $w<r$?
4. Are the events $w=3$ and $w<r$ dependent or independent?
5. Are the events $w=3$ and $w \neq r$ dependent or independent?

Problem 2 (10 points)
Urn A contains 4 white balls and 8 black balls. Urn B contains 9 white balls and 3 black balls. A die will be tossed. If the die comes up a 1 or 2 , a ball is selected from Urn A. If the die comes up $3-6$, a ball is selected from Urn B.

1. Draw a probability tree that depicts this experiment. That is, draw a flow chart to illustrate all possible sequences of events, and the probability of each sequence.
2. Find the probability that a white ball will be drawn.
3. If a white ball is drawn, find the probability that it was taken from Urn A.

Problem 3 (6 points)
In a city, 87% of the households have TVs, 45% have stereos, and 38% have both. Is the event that a randomly selected household has a TV independent of the event that a randomly selected household has a stereo? What is the probability that a randomly selected household has at least one of these appliances?

[^0]Problem 4 (6 points)
Suppose that $P(A)=P(A \mid B)$. Demonstrate that $P(B)=P(B \mid A)$.

Problem 5 (6 points)
Two balanced dice are rolled. What is the probability that the sum of their pips equals 7 ?

Problem 6 (6 points)
Suppose that X is equally likely to take the values $1,2,3,4,5$ and 6 . Specify the probability distribution of X. Compute $E(X), \operatorname{Var}(X)$, and $\operatorname{StDev}(x)$.

Problem 7 (6 points)
Suppose that X and Y are independent random variables, each of which is equally likely to take the values $1,2,3,4,5$ and 6 . Specify the probability distribution of the random variable $T=X+Y$.

Problem 8 (10 points)
The random variable W takes the values $1.5,3,6$ and 7 with probabilities $0.2,0.25,0.4$ and 0.15 , respectively.

1. Compute the expectation of W and W^{2}. Compute the variance of W and its standard deviation.
2. Define the cumulative distribution function $F(t)$ of t by $F(t)=P(W \leq$ $t)$. Plot the function $F(t)$ versus t.
3. Shade the region consisting of each point (x, y) in which $x \geq 0$, and $F(X) \leq y \leq 1$. Compute the area of the shaded region. Does it equal $E(W)$?

Problem 9 (10 points)
Let X be binomial with parameters $n=10$ and $p=0.5$. Compute:

1. $P(X=5)$.
2. $P(3 \leq X \leq 6)$.
3. $P(X \leq 3)$.

Figure 1: Triangular density function

Problem 10 (10 points)
Let T have the symmetric triangular density, with parameters a, b and $m=$ $(a+b) / 2$. See Figure 1 .

1. For each number t between a and m, the probability $P(T \leq t)$ equals the area of a triangle. What is this triangle's height? What is the area?
2. For each number t between m and b, the probability $P(T \geq t)$ equals the area of a triangle. Compute this probability.
3. For each value of t, specify the CDF $F(t)=P(T \leq t)$ of this random variable.

Problem 11 (10 points)
The annual income of graduates from college \mathbf{H} in their first year of employment is normally distributed with mean of $\$ 45,000$ and standard deviation of $\$ 10,000$. A graduate is picked at random. Compute the probability that this graduate earns:

1. Less than $\$ 35,000$.
2. Between $\$ 35,000$ and $\$ 45,000$.
3. Between $\$ 45,000$ and $\$ 60,000$.
4. Exactly $\$ 46,000$.
5. Greater than $\$ 65,000$.

Problem 12 (10 points)
The random variable X and Y are independent, and their distributions are normal, with $E(X)=1000, E(Y)=900, \operatorname{StDev}(X)=300$, and $\operatorname{StDev}(Y)=400$.

1. What can you say about the random variable $(X-Y)$?
2. Compute $P(X<Y)$.

Problem 13 (10 points)

1. Random variables X and Y_{1} are independent. Their probability distributions are given by:

$$
\begin{array}{ll}
& P\left(Y_{1}=1\right)=1 / 4 \\
P(X=1)=1 / 2 & P\left(Y_{1}=2\right)=1 / 4 \\
P(X=2)=1 / 2 & P\left(Y_{1}=3\right)=1 / 4 \\
& P\left(Y_{1}=4\right)=1 / 4
\end{array}
$$

Calculate $\operatorname{Cov}\left(X, Y_{1}\right)$.
2. Random variables X and Y_{2} are given by:

$$
\begin{array}{ll}
P(X=1)=1 / 2 & Y_{2}=2 X \\
P(X=2)=1 / 2 &
\end{array}
$$

Calculate $\operatorname{Cov}\left(X, Y_{2}\right)$.
3. Random variables X and Y_{3} are given by:

$$
\begin{array}{ll}
P(X=1)=1 / 2 & Y_{3}=6-2 X \\
P(X=2)=1 / 2 &
\end{array}
$$

Calculate $\operatorname{Cov}\left(X, Y_{3}\right)$.

MIT OpenCourseWare
https://ocw.mit.edu

2.854 Introduction to Manufacturing Systems

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Problems 1-12 excerpted from The Science of Decision Making, Eric V. Denardo, John Wiley.

