MIT 2.852
 Manufacturing Systems Analysis Lectures 6-9: Flow Lines
 Models That Can Be Analyzed Exactly

Stanley B. Gershwin
http://web.mit.edu/manuf-sys
Massachusetts Institute of Technology

Spring, 2010

Models

- The purpose of an engineering or scientific model is to make predictions.
- Kinds of models:
- Mathematical: aggregated behavior is described by equations. Predictions are made by solving the equations.
- Simulation: detailed behavior is described. Predictions are made by reproducting behavior.
- Models are simplifications of reality.
- Models that are too simple make poor predictions because they leave out important features.
- Models that are too complex make poor predictions because they are difficult to analyze or are time-consuming to use, because they require more data, or because they have errors.

Flow Line

... also known as a Production or Transfer Line.

- Machines are unreliable.
- Buffers are finite.

Flow Line Motivation

- Economic importance.
- Relative simplicity for analysis and for intuition.

Flow Line

Buffers and Inventory

- Buffers are for mitigating asynchronization (ie, they are shock absorbers).
- Buffer space and inventory are expensive.

Flow Line Analysis Difficulties

- Complex behavior.
- Analytical solution available only for limited systems.
- Exact numerical solution feasible only for systems with a small number of buffers.
- Simulation may be too slow for optimization.

Flow Line
 Output Variability

Production output from a simulation of a transfer line.

Flow Line Usual General Assumptions

- Unlimited repair personnel.
- Uncorrelated failures.
- Perfect yield.
- The first machine is never starved and the last is never blocked.
- Blocking before service.
- Operation dependent failures.

Single Reliable Machine

- If the machine is perfectly reliable, and its average operation time is τ, then its maximum production rate is $1 / \tau$.
- Note:
- Sometimes cycle time is used instead of operation time, but BEWARE: cycle time has two meanings!
- The other meaning is the time a part spends in a system. If the system is a single, reliable machine, the two meanings are the same.

Single Unreliable Machine ODFs

- Operation-Dependent Failures
- A machine can only fail while it is working.
- IMPORTANT! MTTF must be measured in working time!
- This is the usual assumption.
- Note: $\mathrm{MTBF}=\mathrm{MTTF}+\mathrm{MTTR}$

Single Unreliable Machine Production rate

- If the machine is unreliable, and
- its average operation time is τ,
- its mean time to fail is MTTF,
- its mean time to repair is MTTR,
then its maximum production rate is

$$
\frac{1}{\tau}\left(\frac{\mathrm{MTTF}}{\mathrm{MTTF}+\mathrm{MTTR}}\right)
$$

Single Unreliable Machine Production rate

Proof

- Average production rate, while machine is up, is $1 / \tau$.
- Average duration of an up period is MTTF.
- Average production during an up period is MTTF/ τ.
- Average duration of up-down period: MTTF + MTTR.
- Average production during up-down period: MTTF/ τ.
- Therefore, average production rate is (MTTF/ $\tau) /($ MTTF + MTTR).

Single Unreliable Machine Geometric Up- and Down-Times

- Assumptions: Operation time is constant (τ). Failure and repair times are geometrically distributed.
- Let p be the probability that a machine fails during any given operation. Then $p=\tau /$ MTTF.

Single Unreliable Machine

- Let r be the probability that M gets repaired in during any operation time when it is down. Then $r=\tau /$ MTTR.
- Then the average production rate of M is

$$
\frac{1}{\tau}\left(\frac{r}{r+p}\right)
$$

- (Sometimes we forget to say "average.")

Single Unreliable Machine Production Rates

- So far, the machine really has three production rates:
- $1 / \tau$ when it is up (short-term capacity),
- 0 when it is down (short-term capacity),
- $(1 / \tau)(r /(r+p))$ on the average (long-term capacity).

Infinite-Buffer Line

$$
-M_{1}-B_{1}-M_{2}-B_{2}-M_{3}-B_{3}-M_{4}-B_{4}-M_{5}-B_{5}-M_{6}
$$

Assumptions:

- A machine is not idle if it is not starved.
- The first machine is never starved.

Infinite-Buffer Line

- The production rate of the line is the production rate of the slowest machine in the line - called the bottleneck.
- Slowest means least average production rate, where average production rate is calculated from one of the previous formulas.

Infinite-Buffer Line

- Production rate is therefore

$$
P=\min _{i} \frac{1}{\tau_{i}}\left(\frac{\mathrm{MTTF}_{i}}{\mathrm{MTTF}_{i}+\mathrm{MTTR}_{i}}\right)
$$

- and M_{i} is the bottleneck.

Infinite-Buffer Line

- The system is not in steady state.
- An infinite amount of inventory accumulates in the buffer upstream of the bottleneck.
- A finite amount of inventory appears downstream of the bottleneck.

Infinite-Buffer Line

Infinite-Buffer Line

- The second bottleneck is the slowest machine upstream of the bottleneck. An infinite amount of inventory accumulates just upstream of it.
- A finite amount of inventory appears between the second bottleneck and the machine upstream of the first bottleneck.
- Et cetera.

Infinite-Buffer Line

A 10-machine line with bottlenecks at Machines 5 and 10.

Infinite-Buffer Line

$$
\rightarrow M_{1}-B_{1} \rightarrow M_{2}-B_{2}-M_{3}-B_{3}-M_{4} \rightarrow B_{4} \rightarrow M_{5} \rightarrow B_{5}-M_{6}-B_{6}-M_{7} \rightarrow B_{7} \rightarrow M_{8}-B_{8} \rightarrow M_{9} \rightarrow B_{9} \rightarrow M_{10} \rightarrow
$$

Question:

- What are the slopes (roughly!) of the two indicated graphs?

Infinite-Buffer Line

Questions:

- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

Zero-Buffer Line

$$
\rightarrow M_{1}=M_{2}=M_{3}=M_{4}=M_{6}
$$

- If any one machine fails, or takes a very long time to do an operation, all the other machines must wait.
- Therefore the production rate is usually less - possibly much less than the slowest machine.

Zero-Buffer Line

- Special case: Constant, unequal operation times, perfectly reliable machines.
- The operation time of the line is equal to the operation time of the slowest machine, so the production rate of the line is equal to that of the slowest machine.

Zero-Buffer Line

Constant, equal operation times, unreliable machines

- Assumption: Failure and repair times are geometrically distributed.
- Define $p_{i}=\tau / \mathrm{MTTF}_{i}=$ probability of failure during an operation.
- Define $r_{i}=\tau /$ MTTR $_{i}$ probability of repair during an interval of length τ when the machine is down.
- Operation-Dependent Failures (ODFs): Machines can only fail while they are working.

Zero-Buffer Line

$$
\rightarrow M_{1}-M_{2}-M_{3}=M_{4}=M_{5}=M_{6}
$$

Buzacott's Zero-Buffer Line Formula:
Let k be the number of machines in the line. Then

$$
P=\frac{1}{\tau} \frac{1}{1+\sum_{i=1}^{k} \frac{p_{i}}{r_{i}}}
$$

Zero-Buffer Line

$$
\rightarrow M_{1}=M_{2}=M_{3} \rightarrow M_{4} \rightarrow M_{5} \rightarrow M_{6}
$$

- Same as the earlier formula (page 11, page 14) when $k=1$. The isolated production rate of a single machine M_{i} is

$$
\frac{1}{\tau}\left(\frac{1}{1+\frac{p_{i}}{r_{i}}}\right)=\frac{1}{\tau}\left(\frac{r_{i}}{r_{i}+p_{i}}\right)
$$

Zero-Buffer Line Proof of formula

- Let τ (the operation time) be the time unit.
- Assumption: At most, one machine can be down.
- Consider a long time interval of length $T \tau$ during which Machine M_{i} fails m_{i} times $(i=1, \ldots k)$.

- Without failures, the line would produce T parts.

Zero-Buffer Line

- The average repair time of M_{i} is τ / r_{i} each time it fails, so the total system down time is close to

$$
D \tau=\sum_{i=1}^{k} \frac{m_{i} \tau}{r_{i}}
$$

where D is the number of operation times in which a machine is down.

Zero-Buffer Line

- The total up time is approximately

$$
U \tau=T \tau-\sum_{i=1}^{k} \frac{m_{i} \tau}{r_{i}}
$$

- where U is the number of operation times in which all machines are up.

Zero-Buffer Line

- Since the system produces one part per time unit while it is working, it produces U parts during the interval of length $T \tau$.
- Note that, approximately,

$$
m_{i}=p_{i} U
$$

because M_{i} can only fail while it is operational.

Zero-Buffer Line

- Thus,

$$
U \tau=T \tau-U \tau \sum_{i=1}^{k} \frac{p_{i}}{r_{i}}
$$

or,

$$
\frac{U}{T}=E_{O D F}=\frac{1}{1+\sum_{i=1}^{k} \frac{p_{i}}{r_{i}}}
$$

Zero-Buffer Line

and

$$
P=\frac{1}{\tau} \frac{1}{1+\sum_{i=1}^{k} \frac{p_{i}}{r_{i}}}
$$

- Note that P is a function of the ratio p_{i} / r_{i} and not p_{i} or r_{i} separately.
- The same statement is true for the infinite-buffer line.
- However, the same statement is not true for a line with finite, non-zero buffers.

Zero-Buffer Line

Questions:

- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

Zero-Buffer Line ODF and TDF

TDF $=$ Time-Dependent Failure. Machines fail independently of one another when they are idle.

$$
P_{T D F}=\frac{1}{\tau} \prod_{i=1}^{k}\left(\frac{r_{i}}{r_{i}+p_{i}}\right)>P_{O D F}
$$

Zero-Buffer Line

P as a function of p_{i}

All machines are the same except M_{i}. As p_{i} increases, the production rate decreases.

Zero-Buffer Line

 P as a function of kAll machines are the same. As the line gets longer, the production rate decreases.

Finite-Buffer Lines

- Motivation for buffers: recapture some of the lost production rate.
- Cost
- in-process inventory/lead time
- floor space
- material handling mechanism

Finite-Buffer Lines

- Infinite buffers: no propagation of disruptions.
- Zero buffers: instantaneous propagation.
- Finite buffers: delayed propagation.
- New phenomena: blockage and starvation.

Finite-Buffer Lines

- Difficulty:
- No simple formula for calculating production rate or inventory levels.
- Solution:
- Simulation
- Analytical approximation

Two-Machine, Finite-Buffer Lines

- Exact solution is available to model of two-machine line.
- Discrete time-discrete state Markov process:

$$
\begin{gathered}
\operatorname{prob}\{X(t+1)=x(t+1) \mid \\
X(t)=x(t), X(t-1)=x(t-1), X(t-2)=x(t-2), \ldots\}= \\
\operatorname{prob}\{X(t+1)=x(t+1) \mid X(t)=x(t)\}
\end{gathered}
$$

- In the following, we construct prob $\{X(t+1)=x(t+1) \mid X(t)=x(t)\}$ and solve the steady-state transition equations.

Two-Machine, Finite-Buffer Lines

Here, $X(t)=\left(n(t), \alpha_{1}(t), \alpha_{2}(t)\right)$, where

- n is the number of parts in the buffer; $n=0,1, \ldots, N$.
- α_{i} is the repair state of $M_{i} ; i=1,2$.
- $\alpha_{i}=1$ means the machine is up or operational;
- $\alpha_{i}=0$ means the machine is down or under repair.

Two-Machine, Finite-Buffer Lines

Motivation:

- We can develop intuition from these systems that is useful for understanding more complex systems.
- Two-machine lines are used as building blocks in decomposition approximations of realistic-sized systems.

Two-Machine, Finite-Buffer Lines

Several models available:

- Deterministic processing time, or Buzacott model: deterministic processing time, geometric failure and repair times; discrete state, discrete time.
- Exponential processing time: exponential processing, failure, and repair time; discrete state, continuous time.
- Continuous material, or fluid: deterministic processing, exponential failure and repair time; mixed state, continuous time.
- Extensions
- Models with multiple up and down states.

Two-Machine, Finite-Buffer Lines

Outline: Details of two-machine, deterministic processing time line.

- Assumptions
- Performance measures
- Transient states
- Transition equations
- Identities
- Analytical solution
- Limits
- Behavior

Two-Machine, Finite-Buffer Lines

 Assumptions, etc.Assumptions, etc. for deterministic processing time systems (including long lines)

- All operation times are deterministic and equal to 1 .
- The amount of material in Buffer i at time t is $n_{i}(t), 0 \leq n_{i}(t) \leq N_{i}$. A buffer gains or loses at most one piece during a time unit.
- The state of the system is $s=\left(n_{1}, \ldots, n_{k-1}, \alpha_{1}, \ldots, \alpha_{k}\right)$.

Two-Machine, Finite-Buffer Lines

 Assumptions, etc.- Operation dependent failures:

$$
\begin{aligned}
& \operatorname{prob}\left[\alpha_{i}(t+1)=0 \mid n_{i-1}(t)=0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right]=0, \\
& \operatorname{prob}\left[\alpha_{i}(t+1)=1 \mid n_{i-1}(t)=0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right]=1, \\
& \operatorname{prob}\left[\alpha_{i}(t+1)=0 \mid n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)=N_{i}\right]=0, \\
& \operatorname{prob}\left[\alpha_{i}(t+1)=1 \mid n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)=N_{i}\right]=1, \\
& \\
& \operatorname{prob}\left[\alpha_{i}(t+1)=0 \mid n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right]=p_{i}, \\
& \operatorname{prob}\left[\alpha_{i}(t+1)=1 \mid n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right]=1-p_{i} .
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Assumptions, etc.

- Repairs:

$$
\begin{aligned}
& \operatorname{prob}\left[\alpha_{i}(t+1)=1 \mid \alpha_{i}(t)=0\right]=r_{i} \\
& \operatorname{prob}\left[\alpha_{i}(t+1)=0 \mid \alpha_{i}(t)=0\right]=1-r_{i} .
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Assumptions, etc.- Timing convention: In the absence of blocking or starvation:

$$
n_{i}(t+1)=n_{i}(t)+\alpha_{i}(t+1)-\alpha_{i+1}(t+1) .
$$

More generally,

$$
n_{i}(t+1)=n_{i}(t)+\mathcal{I}_{u i}(t+1)-\mathcal{I}_{d i}(t+1),
$$

where

$$
\begin{aligned}
& \mathcal{I}_{u i}(t+1)=\left\{\begin{array}{l}
1 \text { if } \alpha_{i}(t+1)=1 \text { and } n_{i-1}(t)>0 \text { and } n_{i}(t)<N_{i}, \\
0 \text { otherwise. }
\end{array}\right. \\
& \mathcal{I}_{d i}(t+1)=\left\{\begin{array}{l}
1 \text { if } \alpha_{i+1}(t+1)=1 \text { and } n_{i}(t)>0 \text { and } n_{i+1}(t)<N_{i+1} \\
0 \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Assumptions, etc.

- In the Markov chain model, there is a set of transient states, and a single final class. Thus, a unique steady state distribution exists. The model is studied in steady state. That is, we calculate the stationary probability distribution.
- We calculate performance measures (production rate and average inventory) from the steady state distribution.

Two-Machine, Finite-Buffer Lines

Performance measures

- The steady state production rate (throughput, flow rate, or efficiency) of Machine M_{i} is the probability that Machine M_{i} produces a part in a time step.
- Units: parts per operation time.
- It is the probability that Machine M_{i} is operational and neither starved nor blocked in time step t.
- It is equivalent, and more convenient, to express it as the probability that Machine M_{i} is operational and neither starved nor blocked in time step $t+1$:

$$
E_{i}=\operatorname{prob}\left(\alpha_{i}(t+1)=1, n_{i-1}(t)>0, n_{i}(t)<N_{i}\right)
$$

For a useful analytical expression, we must rewrite this so that all states are evaluated at the same time.

Two-Machine, Finite-Buffer Lines

 Performance measures

$$
\begin{aligned}
E_{i}= & \operatorname{prob}\left(\alpha_{i}(t+1)=1, n_{i-1}(t)>0, n_{i}(t)<N_{i}\right) \\
= & \operatorname{prob}\left(\alpha_{i}(t+1)=1 \mid n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right) \\
& \operatorname{prob}\left(n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right) \\
+ & \operatorname{prob}\left(\alpha_{i}(t+1)=1 \mid n_{i-1}(t)>0, \alpha_{i}(t)=0, n_{i}(t)<N_{i}\right) \\
& \quad \operatorname{prob}\left(n_{i-1}(t)>0, \alpha_{i}(t)=0, n_{i}(t)<N_{i}\right) . \\
= & \left(1-p_{i}\right) \operatorname{prob}\left(n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right) \\
& +r_{i} \operatorname{prob}\left(n_{i-1}(t)>0, \alpha_{i}(t)=0, n_{i}(t)<N_{i}\right)
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

Performance measures

In steady state, there is a repair for every failure of Machine i, or

$$
\begin{aligned}
& r_{i} \operatorname{prob}\left(n_{i-1}(t)>0, \alpha_{i}(t)=0, n_{i}(t)<N_{i}\right)= \\
& p_{i} \operatorname{prob}\left(n_{i-1}(t)>0, \alpha_{i}(t)=1, n_{i}(t)<N_{i}\right)
\end{aligned}
$$

Therefore,

$$
E_{i}=\operatorname{prob}\left(\alpha_{i}=1, n_{i-1}>0, n_{i}<N_{i}\right)
$$

Two-Machine, Finite-Buffer Lines

 Performance measures

The steady state average level of Buffer i is

$$
\bar{n}_{i}=\sum_{s} n_{i} \operatorname{prob}(s)
$$

Two-Machine, Finite-Buffer Lines

State Space

$$
s=\left(n, \alpha_{1}, \alpha_{2}\right)
$$

where

$$
\begin{gathered}
n=0,1, \ldots, N \\
\alpha_{i}=0,1
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

Transient states

- $(0,1,0)$ is transient because it cannot be reached from any state. If $\alpha_{1}(t+1)=1$ and $\alpha_{2}(t+1)=0$, then $n(t+1)=n(t)+1$.
- $(0,1,1)$ is transient because it cannot be reached from any state. If $n(t)=0$ and $\alpha_{1}(t+1)=1$ and $\alpha_{2}(t+1)=1$, then $n(t+1)=1$ since M_{2} is starved and thus not able to operate. If $n(t)>0$ and $\alpha_{1}(t+1)=1$ and $\alpha_{2}(t+1)=1$, then $n(t+1)=n(t)$.

Two-Machine, Finite-Buffer Lines

Transient states

- $(0,0,0)$ is transient because it can be reached only from itself or $(0,1,0)$. It can be reached from itself if neither machine is repaired; it can be reached from $(0,1,0)$ if the first machine fails while attempting to make a part. It cannot be reached from $(0,0,1)$ or $(0,1,1)$ since the second machine cannot fail. Otherwise, if $\alpha_{1}(t+1)=0$ and $\alpha_{2}(t+1)=0$, then $n(t+1)=n(t)$.
- $(1,1,0)$ is transient because it can be reached only from $(0,0,0)$ or $(0,1,0)$. If $\alpha_{1}(t+1)=1$ and $\alpha_{2}(t+1)=0$, then $n(t+1)=n(t)+1$. Therefore, $n(t)=0$. However, $(1,1,0)$ cannot be reached from $(0,0,1)$ since Machine 2 cannot fail. (For the same reason, it cannot be reached from $(0,1,1)$, but since the latter is transient, that is irrelevant.)
- Similarly, $(N, 0,0),(N, 0,1),(N, 1,1)$, and $(N-1,0,1)$ are transient.

Two-Machine, Finite-Buffer Lines

State space

key
states

transitions
out of transient states
out of non-transient states

$$
\begin{aligned}
& \text { to increasing buffer level } \\
& \text { to decreasing buffer level } \\
& \text { unchanging buffer level }
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

Transition equations

Internal equations $2 \leq n \leq N-2$

$$
\begin{aligned}
& \mathbf{p}(n, 0,0)=\left(1-r_{1}\right)\left(1-r_{2}\right) \mathbf{p}(n, 0,0)+\left(1-r_{1}\right) p_{2} \mathbf{p}(n, 0,1) \\
&+p_{1}\left(1-r_{2}\right) \mathbf{p}(n, 1,0)+p_{1} p_{2} \mathbf{p}(n, 1,1) \\
& \mathbf{p}(n, 0,1)=\left(1-r_{1}\right) r_{2} \mathbf{p}(n+1,0,0)+\left(1-r_{1}\right)\left(1-p_{2}\right) \mathbf{p}(n+1,0,1) \\
&+p_{1} r_{2} \mathbf{p}(n+1,1,0)+p_{1}\left(1-p_{2}\right) \mathbf{p}(n+1,1,1) \\
&\left.\mathbf{p}(n, 1,0)=\begin{array}{rl}
r_{1}\left(1-r_{2}\right) \mathbf{p}(n-1,0,0)+r_{1} p_{2} \mathbf{p}(n-1,0,1) \\
& +\left(1-p_{1}\right)\left(1-r_{2}\right) \mathbf{p}(n-1,1,0)+\left(1-p_{1}\right) p_{2} \mathbf{p}(n-1,1,1) \\
\mathbf{p}(n, 1,1)= & r_{1} r_{2} \mathbf{p}(n, 0,0)+r_{1}\left(1-p_{2}\right) \mathbf{p}(n, 0,1)+\left(1-p_{1}\right) r_{2} \mathbf{p}(n, 1,0) \\
& +\left(1-p_{1}\right)\left(1-p_{2}\right) \mathbf{p}(n, 1,1)
\end{array}\right)
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

Transition equations

Lower boundary equations $n \leq 1$

$$
\begin{aligned}
& \mathbf{p}(0,0,1)=\left(1-r_{1}\right) \mathbf{p}(0,0,1)+\left(1-r_{1}\right) r_{2} \mathbf{p}(1,0,0) \\
&+\left(1-r_{1}\right)\left(1-p_{2}\right) \mathbf{p}(1,0,1)+p_{1}\left(1-p_{2}\right) \mathbf{p}(1,1,1) \\
& \mathbf{p}(1,0,0)=\left(1-r_{1}\right)\left(1-r_{2}\right) \mathbf{p}(1,0,0)+\left(1-r_{1}\right) p_{2} \mathbf{p}(1,0,1)+p_{1} p_{2} \mathbf{p}(1,1,1) \\
& \mathbf{p}(1,0,1)=(\left(1-r_{1}\right) r_{2} \mathbf{p}(2,0,0)+\left(1-r_{1}\right)\left(1-p_{2}\right) \mathbf{p}(2,0,1)+ \\
& p_{1} r_{2} \mathbf{p}(2,1,0)+p_{1}\left(1-p_{2}\right) \mathbf{p}(2,1,1) \\
& \mathbf{p}(1,1,1)= r_{1} \mathbf{p}(0,0,1)+r_{1} r_{2} \mathbf{p}(1,0,0)+r_{1}\left(1-p_{2}\right) \mathbf{p}(1,0,1) \\
&+\left(1-p_{1}\right)\left(1-p_{2}\right) \mathbf{p}(1,1,1) \\
& \mathbf{p}(2,1,0)=r_{1}\left(1-r_{2}\right) \mathbf{p}(1,0,0)+r_{1} p_{2} \mathbf{p}(1,0,1)+\left(1-p_{1}\right) p_{2} \mathbf{p}(1,1,1)
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

Transition equations

Upper boundary equations $n \geq N-1$

$$
\begin{aligned}
& \mathbf{p}(N-2,0,1)=\left(1-r_{1}\right) r_{2} \mathbf{p}(N-1,0,0)+p_{1} r_{2} \mathbf{p}(N-1,1,0) \\
& +p_{1}\left(1-p_{2}\right) \mathbf{p}(N-1,1,1) \\
& \mathbf{p}(N-1,0,0)=\left(1-r_{1}\right)\left(1-r_{2}\right) \mathbf{p}(N-1,0,0)+p_{1}\left(1-r_{2}\right) \mathbf{p}(N-1,1,0) \\
& +p_{1} p_{2} \mathbf{p}(N-1,1,1) \\
& \mathbf{p}(N-1,1,0)=r_{1}\left(1-r_{2}\right) \mathbf{p}(N-2,0,0)+r_{1} p_{2} \mathbf{p}(N-2,0,1) \\
& +\left(1-p_{1}\right)\left(1-r_{2}\right) \mathbf{p}(N-2,1,0)+\left(1-p_{1}\right) p_{2} \mathbf{p}(N-2,1,1) \\
& \mathbf{p}(N-1,1,1)=r_{1} r_{2} \mathbf{p}(N-1,0,0)+\left(1-p_{1}\right) r_{2} \mathbf{p}(N-1,1,0) \\
& +\left(1-p_{1}\right)\left(1-p_{2}\right) \mathbf{p}(N-1,1,1)+r_{2} \mathbf{p}(N, 1,0) \\
& \mathbf{p}(N, 1,0)=r_{1}\left(1-r_{2}\right) \mathbf{p}(N-1,0,0)+\left(1-p_{1}\right)\left(1-r_{2}\right) \mathbf{p}(N-1,1,0) \\
& +\left(1-p_{1}\right) p_{2} \mathbf{p}(N-1,1,1)+\left(1-r_{2}\right) \mathbf{p}(N, 1,0)
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Performance measures
E_{1} is the probability that M_{1} is operational and not blocked:

$$
E_{1}=\sum_{\substack{n<N \\ \alpha_{1}=1}} \mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right) .
$$

Two-Machine, Finite-Buffer Lines

 Performance measures
E_{2} is the probability that M_{2} is operational and not starved:

$$
E_{2}=\sum_{\substack{n>0 \\ \alpha_{2}=1}} \mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right) .
$$

Two-Machine, Finite-Buffer Lines

Performance measures

The probabilities of starvation and blockage are:

$$
\begin{aligned}
& p_{s}=\mathbf{p}(0,0,1), \text { the probability of starvation, } \\
& p_{b}=\mathbf{p}(N, 1,0) \text {, the probability of blockage. }
\end{aligned}
$$

The average buffer level is:

$$
\bar{n}=\sum_{\mathrm{all}}^{s} n \mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right) .
$$

Two-Machine, Finite-Buffer Lines

 Identities

Repair frequency equals failure frequency For every repair, there is a failure (in steady state). When the system is in steady state,

$$
\begin{aligned}
& r_{1} \operatorname{prob}\left[\left\{\alpha_{1}=0\right\} \text { and }\{n<N\}\right]= \\
& p_{1} \operatorname{prob}\left[\left\{\alpha_{1}=1\right\} \text { and }\{n<N\}\right] .
\end{aligned}
$$

Let

$$
D_{1}=\operatorname{prob}\left[\left\{\alpha_{1}=0\right\} \text { and }\{n<N\}\right],
$$

then

$$
r_{1} D_{1}=p_{1} E_{1} .
$$

Two-Machine, Finite-Buffer Lines

 IdentitiesProof: The left side is the probability that the state leaves the set of states

$$
\mathcal{S}_{0}=\left\{\left\{\alpha_{1}=0\right\} \text { and }\{n<N\}\right\} .
$$

since the only way the system can leave \mathcal{S}_{0} is for M_{1} to get repaired. (M_{1} is down, so the buffer cannot become full.)

Two-Machine, Finite-Buffer Lines

 IdentitiesThe right side is the probability that the state enters \mathcal{S}_{0}. When the system is in steady state, the only way for the state to enter \mathcal{S}_{0} is for it to be in set

$$
\mathcal{S}_{1}=\left\{\left\{\alpha_{1}=1\right\} \text { and }\{n<N\}\right\}
$$

in the previous time unit.

Two-Machine, Finite-Buffer Lines

 IdentitiesConservation of Flow $E_{1}=E_{2}=E$

$$
\begin{aligned}
& \text { Proof: } \begin{aligned}
& E_{1}=\sum_{n=0}^{N-1} \mathbf{p}(n, 1,0)+\sum_{n=0}^{N-1} \mathbf{p}(n, 1,1) \\
& E_{2}=\sum_{n=1}^{N} \mathbf{p}(n, 0,1)+\sum_{n=1}^{N} \mathbf{p}(n, 1,1) \\
& \text { Then } E_{1}-E_{2}=\sum_{n=0}^{N-1} \mathbf{p}(n, 1,0)-\sum_{n=1}^{N} \mathbf{p}(n, 0,1) \\
&=\sum_{n=1}^{N-2} \mathbf{p}(n+1,1,0)-\sum_{n=1}^{N-2} \mathbf{p}(n, 0,1)
\end{aligned} .
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Identities

Or,

$$
E_{1}-E_{2}=\sum_{n=1}^{N-2}(\mathbf{p}(n+1,1,0)-\mathbf{p}(n, 0,1))
$$

Define $\delta(n)=\mathbf{p}(n+1,1,0)-\mathbf{p}(n, 0,1)$. Then

$$
E_{1}-E_{2}=\sum_{n=1}^{N-2} \delta(n)
$$

Two-Machine, Finite-Buffer Lines

 Identities

Add lots of lower boundary equations:

$$
\begin{gathered}
\mathbf{p}(0,0,1)+\mathbf{p}(1,0,0)+\mathbf{p}(1,1,1)+\mathbf{p}(2,1,0)= \\
+\left(1-r_{1}\right)\left(1-p_{2}\right) \mathbf{p}(1,0,1)+p_{1}\left(1-p_{2}\right) \mathbf{p}(1,1,1) \\
+\left(1-r_{1}\right)\left(1-r_{2}\right) \mathbf{p}(1,0,0)+\left(1-r_{1}\right) p_{2} \mathbf{p}(1,0,1)+p_{1} p_{2} \mathbf{p}(1,1,1) \\
+r_{1} \mathbf{p}(0,0,1)+r_{1} r_{2} \mathbf{p}(1,0,0)+r_{1}\left(1-p_{2}\right) \mathbf{p}(1,0,1) \\
+\left(1-p_{1}\right)\left(1-p_{2}\right) \mathbf{p}(1,1,1) \\
+r_{1}\left(1-r_{2}\right) \mathbf{p}(1,0,0)+r_{1} p_{2} \mathbf{p}(1,0,1)+\left(1-p_{1}\right) p_{2} \mathbf{p}(1,1,1)
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

 Identities

Or,

$$
\begin{gathered}
\mathbf{p}(0,0,1)+\mathbf{p}(1,0,0)+\mathbf{p}(1,1,1)+\mathbf{p}(2,1,0)= \\
\mathbf{p}(0,0,1)+\mathbf{p}(1,0,0)+\mathbf{p}(1,0,1)+\mathbf{p}(1,1,1)
\end{gathered}
$$

Or,

$$
\mathbf{p}(2,1,0)=\mathbf{p}(1,0,1)
$$

Then $\delta(1)=0$.

Two-Machine, Finite-Buffer Lines

 Identities

Now add all the internal equations, after changing the index of two of them:

$$
\begin{gathered}
\mathbf{p}(n, 0,0)+\mathbf{p}(n-1,0,1)+\mathbf{p}(n+1,1,0)+\mathbf{p}(n, 1,1)= \\
\left(1-r_{1}\right)\left(1-r_{2}\right) \mathbf{p}(n, 0,0)+\left(1-r_{1}\right) p_{2} \mathbf{p}(n, 0,1) \\
+p_{1}\left(1-r_{2}\right) \mathbf{p}(n, 1,0)+p_{1} p_{2} \mathbf{p}(n, 1,1) \\
\left(1-r_{1}\right) r_{2} \mathbf{p}(n, 0,0)+\left(1-r_{1}\right)\left(1-p_{2}\right) \mathbf{p}(n, 0,1) \\
+p_{1} r_{2} \mathbf{p}(n, 1,0)+p_{1}\left(1-p_{2}\right) \mathbf{p}(n, 1,1) \\
\\
r_{1}\left(1-r_{2}\right) \mathbf{p}(n, 0,0)+r_{1} p_{2} \mathbf{p}(n, 0,1) \\
+\left(1-p_{1}\right)\left(1-r_{2}\right) \mathbf{p}(n, 1,0)+\left(1-p_{1}\right) p_{2} \mathbf{p}(n, 1,1) \\
r_{1} r_{2} \mathbf{p}(n, 0,0)+r_{1}\left(1-p_{2}\right) \mathbf{p}(n, 0,1)+\left(1-p_{1}\right) r_{2} \mathbf{p}(n, 1,0) \\
+\left(1-p_{1}\right)\left(1-p_{2}\right) \mathbf{p}(n, 1,1)
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

 Identities

Or, for $n=2, \ldots, N-2$,

$$
\begin{aligned}
& \mathbf{p}(n, 0,0)+\mathbf{p}(n-1,0,1)+\mathbf{p}(n+1,1,0)+\mathbf{p}(n, 1,1)= \\
& \mathbf{p}(n, 0,0)+\mathbf{p}(n, 0,1)+\mathbf{p}(n, 1,0)+\mathbf{p}(n, 1,1)
\end{aligned}
$$

or,

$$
\mathbf{p}(n+1,1,0)-\mathbf{p}(n, 0,1)=\mathbf{p}(n, 1,0)-\mathbf{p}(n-1,0,1)
$$

or,

$$
\delta(n)=\delta(n-1)
$$

Two-Machine, Finite-Buffer Lines

 Identities

Since

$$
\delta(1)=0 \text { and } \delta(n)=\delta(n-1), n=2, \ldots, N-2
$$

we have

$$
\delta(n)=0, \quad n=1, \ldots, N-2
$$

Therefore

$$
E_{1}-E_{2}=\sum_{n=1}^{N-2} \delta(n)=0
$$

QED

Two-Machine, Finite-Buffer Lines

 Identities

Alternative interpretation of $\mathbf{p}(n+1,1,0)-\mathbf{p}(n, 0,1)=0$:

- The only way the buffer can go from $n+1$ to n is for the state to go to $(n, 0,1)$.
- The only way the buffer can go from n to $n+1$ is for the state to go to $(n+1,1,0)$.

Two-Machine, Finite-Buffer Lines

 Identities

Flow rate/idle time

$$
E=e_{1}\left(1-p_{b}\right)
$$

Proof: From the definitions of E_{1} and D_{1}, we have

$$
\begin{aligned}
& \operatorname{prob}[n<N]=E+D_{1}, \\
& 1-p_{b}=E+\frac{p_{1}}{r_{1}} E=\frac{E}{e_{1}} .
\end{aligned}
$$

Similarly,

$$
E=e_{2}\left(1-p_{s}\right)
$$

Two-Machine, Finite-Buffer Lines

 Analytical Solution

1. Guess a solution for the internal states of the form $\mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right)=\xi_{j}\left(n, \alpha_{1}, \alpha_{2}\right)=X^{n} Y_{1}^{\alpha_{1}} Y_{2}^{\alpha_{2}}$.
2. Determine sets of $X_{j}, Y_{1 j}, Y_{2 j}$ that satisfy the internal equations.
3. Extend $\xi_{j}\left(n, \alpha_{1}, \alpha_{2}\right)$ to all of the boundary states using some of the boundary equations.
4. Find coefficients C_{j} so that $\mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right)=\sum_{j} C_{j} \xi_{j}\left(n, \alpha_{1}, \alpha_{2}\right)$ satisfies the remaining boundary equationss and normalization.

Two-Machine, Finite-Buffer Lines

 Analytical SolutionInternal equations:

$$
\begin{gathered}
X^{n}=\left(1-r_{1}\right)\left(1-r_{2}\right) X^{n}+\left(1-r_{1}\right) p_{2} X^{n} Y_{2}+p_{1}\left(1-r_{2}\right) X^{n} Y_{1}+p_{1} p_{2} X^{n} Y_{1} Y_{2} \\
X^{n-1} Y_{2}=\begin{array}{c}
\left(1-r_{1}\right) r_{2} X^{n}+\left(1-r_{1}\right)\left(1-p_{2}\right) X^{n} Y_{2}+p_{1} r_{2} X^{n} Y_{1} \\
\\
+p_{1}\left(1-p_{2}\right) X^{n} Y_{1} Y_{2}
\end{array} \\
X^{n+1} Y_{1}=r_{1}\left(1-r_{2}\right) X^{n}+r_{1} p_{2} X^{n} Y_{2}+\left(1-p_{1}\right)\left(1-r_{2}\right) X^{n} Y_{1}+\left(1-p_{1}\right) p_{2} X^{n} Y_{1} Y_{2} \\
X^{n} Y_{1} Y_{2}=r_{1} r_{2} X^{n}+r_{1}\left(1-p_{2}\right) X^{n} Y_{2}+\left(1-p_{1}\right) r_{2} X^{n} Y_{1}+\left(1-p_{1}\right)\left(1-p_{2}\right) X^{n} Y_{1} Y_{2}
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

 Analytical SolutionOr,

$$
\left.\begin{array}{rl}
1=\left(1-r_{1}\right)\left(1-r_{2}\right)+\left(1-r_{1}\right) p_{2} Y_{2}+p_{1}\left(1-r_{2}\right) Y_{1}+p_{1} p_{2} Y_{1} Y_{2} \\
X^{-1} Y_{2}= & \left(1-r_{1}\right) r_{2}+\left(1-r_{1}\right)\left(1-p_{2}\right) Y_{2}+p_{1} r_{2} Y_{1} \\
& +p_{1}\left(1-p_{2}\right) Y_{1} Y_{2}
\end{array}\right)
$$

Two-Machine, Finite-Buffer Lines

 Analytical SolutionOr,

$$
\begin{gathered}
1=\left(1-r_{1}+Y_{1} p_{1}\right)\left(1-r_{2}+Y_{2} p_{2}\right) \\
X^{-1} Y_{2}=\left(1-r_{1}+Y_{1} p_{1}\right)\left(r_{2}+Y_{2}\left(1-p_{2}\right)\right) \\
X Y_{1}=\left(r_{1}+Y_{1}\left(1-p_{1}\right)\right)\left(1-r_{2}+Y_{2} p_{2}\right) \\
Y_{1} Y_{2}=\left(r_{1}+Y_{1}\left(1-p_{1}\right)\right)\left(r_{2}+Y_{2}\left(1-p_{2}\right)\right)
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

Analytical Solution

Since the last equation is a product of the other three, there are only three independent equations in three unknowns here. They may be simplified further:

$$
\begin{gathered}
1=\left(1-r_{1}+Y_{1} p_{1}\right)\left(1-r_{2}+Y_{2} p_{2}\right) \\
X Y_{1}=\frac{r_{1}+Y_{1}\left(1-p_{1}\right)}{1-r_{1}+Y_{1} p_{1}} \\
X^{-1} Y_{2}=\frac{r_{2}+Y_{2}\left(1-p_{2}\right)}{1-r_{2}+Y_{2} p_{2}}
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

Analytical Solution

Eliminating X and Y_{2}, this becomes

$$
\begin{aligned}
0= & Y_{1}^{2}\left(p_{1}+p_{2}-p_{1} p_{2}-p_{1} r_{2}\right) \\
- & Y_{1}\left(r_{1}\left(p_{1}+p_{2}-p_{1} p_{2}-p_{1} r_{2}\right)+p_{1}\left(r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}\right)\right) \\
& +r_{1}\left(r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}\right)
\end{aligned}
$$

which has two solutions:

$$
Y_{11}=\frac{r_{1}}{p_{1}}, \quad Y_{12}=\frac{r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}}{p_{1}+p_{2}-p_{1} p_{2}-p_{1} r_{2}} .
$$

Two-Machine, Finite-Buffer Lines

 Analytical SolutionThe complete solutions are:

$$
\left.\left.\begin{array}{l}
Y_{11}=\frac{r_{1}}{p_{1}} \\
Y_{21}=\frac{r_{2}}{p_{2}} \\
X_{1}=1
\end{array}\right\} \quad \begin{array}{l}
Y_{12}=\frac{r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}}{p_{1}+p_{2}-p_{1} p_{2}-p_{1} r_{2}} \\
Y_{22}=\frac{r_{1}+r_{2}-r_{1} r_{2}-p_{1} r_{2}}{p_{1}+p_{2}-p_{1} p_{2}-p_{2} r_{1}} \\
X_{2}=\frac{Y_{22}}{Y_{12}}
\end{array}\right\}
$$

Two-Machine, Finite-Buffer Lines

 Analytical SolutionRecall that $\xi\left(n, \alpha_{1}, \alpha_{2}\right)=X^{n} Y_{1}^{\alpha_{1}} Y_{2}^{\alpha_{2}}$.
We now have the complete internal solution:

$$
\begin{gathered}
\mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right)=C_{1} \xi_{1}\left(n, \alpha_{1}, \alpha_{2}\right)+C_{2} \xi_{2}\left(n, \alpha_{1}, \alpha_{2}\right) \\
=C_{1} X_{1}^{n} Y_{11}^{\alpha_{1}} Y_{21}^{\alpha_{2}}+C_{2} X_{2}^{n} Y_{12}^{\alpha_{1}} Y_{22}^{\alpha_{2}} .
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

 Analytical Solution

Boundary conditions:
If we plug the internal expression for $\xi\left(n, \alpha_{1}, \alpha_{2}\right)=X^{n} Y_{1}^{\alpha_{1}} Y_{2}^{\alpha_{2}}$ into the right side of

$$
\begin{aligned}
\xi(1,0,1)= & \left(1-r_{1}\right) r_{2} \xi(2,0,0)+\left(1-r_{1}\right)\left(1-p_{2}\right) \xi(2,0,1)+ \\
& p_{1} r_{2} \xi(2,1,0)+p_{1}\left(1-p_{2}\right) \xi(2,1,1),
\end{aligned}
$$

we find

$$
\xi(1,0,1)=X Y_{2}
$$

which implies that

$$
\mathbf{p}(1,0,1)=C_{1} Y_{21}+C_{2} X_{2} Y_{22}
$$

Two-Machine, Finite-Buffer Lines

 Analytical SolutionRecall that

$$
\mathbf{p}(2,1,0)=\mathbf{p}(1,0,1)
$$

Then

$$
C_{1} X_{1}^{2} Y_{11}+C_{2} X_{2}^{2} Y_{12}=C_{1} X_{1} Y_{21}+C_{2} X_{2} Y_{22}
$$

or,

$$
\left(C_{1} X_{1}^{2} Y_{11}-C_{1} X_{1} Y_{21}\right)+\left(C_{2} X_{2}^{2} Y_{12}-C_{2} X_{2} Y_{22}\right)=0
$$

or,

$$
C_{1} X_{1}\left(X_{1} Y_{11}-Y_{21}\right)+C_{2} X_{2}\left(X_{2} Y_{12}-Y_{22}\right)=0
$$

Two-Machine, Finite-Buffer Lines

 Analytical SolutionRecall

$$
X_{2}=\frac{Y_{22}}{Y_{12}}
$$

Consequently,

$$
C_{1} X_{1}\left(X_{1} Y_{11}-Y_{21}\right)=0
$$

or,

$$
C_{1}\left(\frac{r_{1}}{p_{1}}-\frac{r_{2}}{p_{2}}\right)=0,
$$

Therefore,

$$
\text { if } \frac{r_{1}}{p_{1}} \neq \frac{r_{2}}{p_{2}} \text {, then } C_{1}=0
$$

Two-Machine, Finite-Buffer Lines Analytical Solution

In the following, we assume $\frac{r_{1}}{p_{1}} \neq \frac{r_{2}}{p_{2}}$ and we drop the j subscript.
But what happens when $\frac{r_{1}}{p_{1}}=\frac{r_{2}}{p_{2}}$?
And what does $\frac{r_{1}}{p_{1}}=\frac{r_{2}}{p_{2}}$ mean?

Two-Machine, Finite-Buffer Lines

 Analytical SolutionCombining the following two boundary conditions ...

$$
\begin{aligned}
r_{1} \mathbf{p}(0,0,1)= & \left(1-r_{1}\right) r_{2} \mathbf{p}(1,0,0)+\left(1-r_{1}\right)\left(1-p_{2}\right) \mathbf{p}(1,0,1) \\
& +p_{1}\left(1-p_{2}\right) \mathbf{p}(1,1,1) . \\
\mathbf{p}(1,1,1)= & r_{1} \mathbf{p}(0,0,1)+r_{1} r_{2} \mathbf{p}(1,0,0)+r_{1}\left(1-p_{2}\right) \mathbf{p}(1,0,1) \\
& +\left(1-p_{1}\right)\left(1-p_{2}\right) \mathbf{p}(1,1,1)
\end{aligned}
$$

gives

$$
\mathbf{p}(1,1,1)=r_{2} \mathbf{p}(1,0,0)+\left(1-p_{2}\right) C X Y_{2}+\left(1-p_{2}\right) \mathbf{p}(1,1,1)
$$

or,

$$
p_{2} \mathbf{p}(1,1,1)=r_{2} \mathbf{p}(1,0,0)+\left(1-p_{2}\right) C X Y_{2} .
$$

There are three unknown quantities: $\mathbf{p}(1,0,0), \mathbf{p}(1,1,1)$, and C.

Two-Machine, Finite-Buffer Lines

Analytical Solution

Another boundary condition,

$$
\mathbf{p}(1,0,0)=\left(1-r_{1}\right)\left(1-r_{2}\right) \mathbf{p}(1,0,0)+\left(1-r_{1}\right) p_{2} \mathbf{p}(1,0,1)+p_{1} p_{2} \mathbf{p}(1,1,1)
$$

can be written

$$
\left(r_{1}+r_{2}-r_{1} r_{2}\right) \mathbf{p}(1,0,0)=\left(1-r_{1}\right) p_{2} C X Y_{2}+p_{1} p_{2} \mathbf{p}(1,1,1)
$$

which also has three unknown quantities: $\mathbf{p}(1,0,0), \mathbf{p}(1,1,1)$, and C. If we eliminate $\mathbf{p}(1,1,1)$ and simplify, we get

$$
\left(r_{1}+r_{2}-r_{1} r_{2}-p_{1} r_{2}\right) \mathbf{p}(1,0,0)=\left(p_{1}+p_{2}-p_{1} p_{2}-p_{2} r_{1}\right) C X Y_{2}
$$

From the definition of Y_{22} (slide 85),

$$
\mathbf{p}(1,0,0)=C X
$$

Two-Machine, Finite-Buffer Lines

 Analytical SolutionIf we plug this into the last equation on slide 91 , we get

$$
p_{2} \mathbf{p}(1,1,1)=C X\left(r_{2}+\left(1-p_{2}\right) Y_{2}\right)
$$

or

$$
\mathbf{p}(1,1,1)=\frac{C X}{p_{2}} \frac{r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}}{p_{1}+p_{2}-p_{1} p_{2}-r_{1} p_{2}}
$$

Finally, the first equation on slide 91 gives

$$
\mathbf{p}(0,0,1)=C X \frac{r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}}{r_{1} p_{2}}
$$

The upper boundary conditions are determined in the same way.

Two-Machine, Finite-Buffer Lines Analytical Solution

Summary of Steady-State Probabilities:

Boundary values

$$
\begin{aligned}
& \mathbf{p}(0,0,0)=0 \\
& \mathbf{p}(0,0,1)=C X \frac{r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}}{r_{1} p_{2}} \\
& \mathbf{p}(0,1,0)=0 \\
& \mathbf{p}(0,1,1)=0 \\
& \mathbf{p}(1,0,0)=C X \\
& \mathbf{p}(1,0,1)=C X Y_{2} \\
& \mathbf{p}(1,1,0)=0 \\
& \mathbf{p}(1,1,1)=\frac{C X}{p_{2}} \frac{r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}}{p_{1}+p_{2}-p_{1} p_{2}-r_{1} p_{2}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{p}(N-1,0,0) & =C X^{N-1} \\
\mathbf{p}(N-1,0,1) & =0 \\
\mathbf{p}(N-1,1,0) & =C X^{N-1} Y_{1} \\
\mathbf{p}(N-1,1,1) & =\frac{C X^{N-1}}{p_{1}} \frac{r_{1}+r_{2}-r_{1} r_{2}-p_{1} r_{2}}{p_{1}+p_{2}-p_{1} p_{2}-p_{1} r_{2}} \\
\mathbf{p}(N, 0,0) & =0 \\
\mathbf{p}(N, 0,1) & =0 \\
\mathbf{p}(N, 1,0) & =C X^{N-1} \frac{r_{1}+r_{2}-r_{1} r_{2}-p_{1} r_{2}}{p_{1} r_{2}} \\
\mathbf{p}(N, 1,1) & =0
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

Analytical Solution

Summary of Steady-State Probabilities: Internal states, etc.

$$
\begin{aligned}
& \mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right)=C X^{n} Y_{1}^{\alpha_{1}} Y_{2}^{\alpha_{2}} \\
& 2 \leq n \leq N-2 ; \quad \alpha_{1}=0,1 ; \quad \alpha_{2}=0,1
\end{aligned}
$$

where

$$
\begin{aligned}
Y_{1} & =\frac{r_{1}+r_{2}-r_{1} r_{2}-r_{1} p_{2}}{p_{1}+p_{2}-p_{1} p_{2}-p_{1} r_{2}} \\
Y_{2} & =\frac{r_{1}+r_{2}-r_{1} r_{2}-p_{1} r_{2}}{p_{1}+p_{2}-p_{1} p_{2}-r_{1} p_{2}} \\
X & =\frac{Y_{2}}{Y_{1}}
\end{aligned}
$$

and C is a normalizing constant.

Two-Machine, Finite-Buffer Lines Analytical Solution

Observations:
Typically, we can expect that $r_{i}<.2$ since a repair is likely to take at least 5 times as long as an operation. Also, since, typically, efficiency $=r_{i} /\left(r_{i}+p_{i}\right)>.7$, $p_{i}<.4 r_{i}, \mathbf{p}(0,0,1), \mathbf{p}(1,1,1), \mathbf{p}(N-1,1,1), \mathbf{p}(N, 1,0)$ are much larger than internal probabilities.

This is because the system tends to spend much more time at those states than at internal states.

Refer to transition graph on page 60 to trace out typical scenarios.

Two-Machine, Finite-Buffer Lines

 Limits$$
\begin{aligned}
& \text { If } r_{1} \rightarrow 0, \quad \text { then } \quad E \rightarrow 0, p_{s} \rightarrow 1, p_{b} \rightarrow 0, \bar{n} \rightarrow 0 . \\
& \text { If } r_{2} \rightarrow 0, \quad \text { then } \quad E \rightarrow 0, p_{b} \rightarrow 1, p_{s} \rightarrow 0, \bar{n} \rightarrow N . \\
& \text { If } p_{1} \rightarrow 0, \quad \text { then } \quad p_{s} \rightarrow 0, E \rightarrow 1-p_{b} \rightarrow e_{2}, \bar{n} \rightarrow N-e_{2} . \\
& \text { If } p_{2} \rightarrow 0, \quad \text { then } \quad p_{b} \rightarrow 0, E \rightarrow 1-p_{s} \rightarrow e_{1}, \bar{n} \rightarrow e_{1} .
\end{aligned}
$$

If $N \rightarrow \infty$ and $e_{1}<e_{2}$, then $E \rightarrow e_{1}, p_{b} \rightarrow 0, p_{s} \rightarrow 1-\frac{e_{1}}{e_{2}}$.

Two-Machine, Finite-Buffer Lines

 Limits

Proof:
Many of the limits follow from combining conservation of flow and the flow rate-idle time relationship:

$$
E=\frac{r_{1}}{r_{1}+p_{1}}\left(1-p_{b}\right)=\frac{r_{2}}{r_{2}+p_{2}}\left(1-p_{s}\right) .
$$

The last set comes from the analytic solution and the observation that if $e_{1}>e_{2}, \quad X>1$, and if $e_{1}<e_{2}, \quad X<1$.

Two-Machine, Finite-Buffer Lines

Behavior

$$
r_{1}=.1, p_{1}=.01, r_{2}=.1, p_{2}=.01, N=10
$$

Two-Machine, Finite-Buffer Lines

 Behavior

Two-Machine, Finite-Buffer Lines

Behavior

Two-Machine, Finite-Buffer Lines

 Behavior

$$
r_{i}=.1, i=1,2, p_{1}=.01, p_{2}=.02, N=100
$$

Two-Machine, Finite-Buffer Lines

 Behavior
Deterministic Processing Time

$$
\begin{aligned}
& \tau=1 . \\
& p_{1}=.1 \\
& r_{2}=.1 \\
& p_{2}=.1
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Behavior

Discussion:

- Why are the curves increasing?
- Why do they reach an asymptote?
- What is P when $N=0$?
- What is the limit of P as $N \rightarrow \infty$?
- Why are the curves with smaller r_{1} lower?

Deterministic Processing Time

Two-Machine, Finite-Buffer Lines

 Behavior

Discussion:

- Why are the curves increasing?
- Why different asymptotes?
- What is \bar{n} when $N=0$?
\checkmark What is the limit of \bar{n} as $N \rightarrow \infty$? \bar{n}
- Why are the curves with smaller r_{1} lower?

Deterministic Processing Time

Two-Machine, Finite-Buffer Lines Behavior

Deterministic Processing Time

- What can you say about the optimal buffer size?
- How should it be related to r_{i}, p_{i} ?

Two-Machine, Finite-Buffer Lines

Behavior

Questions:

- If we want to increase production rate, which machine should we improve?
- What would happen to production rate if we improved any other machine?

Two-Machine, Finite-Buffer Lines

 Production rate vs. storage space

Improvements to non-bottleneck machine.

Note: Graphs would be the same if we improved Machine 2.

Two-Machine, Finite-Buffer Lines

 Average inventory vs. storage space Inventory increases as the (non-bottleneck) upstream machine is improved and as the buffer space is increased.

Two-Machine, Finite-Buffer Lines

Average inventory vs. storage space

- Inventory decreases as the (non-bottleneck) downstream machine is improved.
- Inventory increases as the buffer space is increased.

Two-Machine, Finite-Buffer Lines Frequency and Production Rate

Should we prefer short, frequent, disruptions or long, infrequent, disruptions?

- $r_{2}=0.8, p_{2}=0.09, N=10$
- r_{1} and p_{1} vary together and $\frac{r_{1}}{r_{1}+p_{1}}=.9$
- Answer: evidently, short, frequent failures.
- Why?

Two-Machine, Finite-Buffer Lines

 Frequency and Production Rate

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$ - Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines

 Frequency and Production Rate

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$-Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines

 Frequency and Production Rate

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$ - Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines

 Frequency and Production Rate

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$ - Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines

 Frequency and Production Rate

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$-Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines

 Frequency and Average Inventory

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$ - Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines

 Frequency and Average Inventory

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$-Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines

 Frequency and Average Inventory

- M_{1}
- $r_{1}=.1, p_{1}=.01$
- M_{2}
- $r_{2}=.1, p_{2}=.01$ - Fast
- $r_{2}=.01, p_{2}=.001$ - Slow
- $r_{2}=.001, p_{2}=.0001$ - Very slow

Two-Machine, Finite-Buffer Lines Exponential processing time model

Exponential processing time: exponential processing, failure, and repair time; discrete state, continuous time; discrete material.

Assumptions are similar to deterministic processing time model, except:

- $\mu_{i} \delta t=$ the probability that M_{i} completes an operation in $(t, t+\delta t)$;
- $p_{i} \delta t=$ the probability that M_{i} fails during an operation in $(t, t+\delta t)$;
- $r_{i} \delta t=$ the probability that M_{i} is repaired, while it is down, in $(t, t+\delta t)$;

We can assume that only one event occurs during $(t, t+\delta t)$.

Two-Machine, Finite-Buffer Lines Exponential processing time model

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

Performance measures for general exponential lines
The probability that Machine M_{i} is processing a workpiece is the efficiency:

$$
E_{i}=\operatorname{prob}\left[\alpha_{i}=1, n_{i-1}>0, n_{i}<N_{i}\right] .
$$

The production rate (throughput rate) of Machine M_{i}, in parts per time unit, is

$$
P_{i}=\mu_{i} E_{i} .
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

Conservation of Flow

$$
P=P_{1}=P_{2}=\ldots=P_{k} .
$$

This should be proved from the model.

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

Flow Rate-Idle Time Relationship

The isolated efficiency e_{i} of Machine M_{i} is, as usual,

$$
e_{i}=\frac{r_{i}}{r_{i}+p_{i}}
$$

and it represents the fraction of time that M_{i} is operational. The isolated production rate is

$$
\rho_{i}=\mu_{i} e_{i}
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

The flow rate-idle time relation is

$$
E_{i}=e_{i} \operatorname{prob}\left[n_{i-1}>0 \text { and } n_{i}<N_{i}\right] .
$$

or

$$
P=\rho_{i} \operatorname{prob}\left[n_{i-1}>0 \text { and } n_{i}<N_{i}\right] .
$$

This should also be proved from the model.

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

Balance equations - steady state only

$$
\begin{gathered}
\boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{a}_{\mathbf{2}}=\mathbf{0}: \\
\qquad \begin{array}{c}
\mathbf{p}(n, 0,0)\left(r_{1}+r_{2}\right)=\mathbf{p}(n, 1,0) p_{1}+\mathbf{p}(n, 0,1) p_{2} \\
1 \leq n \leq N-1 \\
\mathbf{p}(0,0,0)\left(r_{1}+r_{2}\right)=\mathbf{p}(0,1,0) p_{1} \\
\mathbf{p}(N, 0,0)\left(r_{1}+r_{2}\right)=\mathbf{p}(N, 0,1) p_{2}
\end{array}
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

$$
\alpha_{1}=0, \alpha_{2}=1:
$$

$$
\begin{gathered}
\mathbf{p}(n, 0,1)\left(r_{1}+\mu_{2}+p_{2}\right) \quad=\quad \mathbf{p}(n, 0,0) r_{2}+\mathbf{p}(n, 1,1) p_{1} \\
+\mathbf{p}(n+1,0,1) \mu_{2}, 1 \leq n \leq N-1 \\
\mathbf{p}(0,0,1) r_{1}=\mathbf{p}(0,0,0) r_{2}+\mathbf{p}(0,1,1) p_{1}+\mathbf{p}(1,0,1) \mu_{2} \\
\mathbf{p}(N, 0,1)\left(r_{1}+\mu_{2}+p_{2}\right)=\mathbf{p}(N, 0,0) r_{2}
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

$$
\alpha_{1}=1, \alpha_{2}=0:
$$

$$
\left.\begin{array}{rl}
\mathbf{p}(n, 1,0)\left(p_{1}+\mu_{1}+r_{2}\right)= & \mathbf{p}(n-1,1,0) \mu_{1}+\mathbf{p}(n, 0,0) r_{1} \\
& +\mathbf{p}(n, 1,1) p_{2}, 1 \leq n \leq N-1
\end{array}\right) .
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

$$
\begin{aligned}
& \boldsymbol{\alpha}_{\mathbf{1}}=\mathbf{1}, \boldsymbol{\alpha}_{\mathbf{2}}=\mathbf{1}: \\
& \begin{array}{r}
\mathbf{p}(n, 1,1)\left(p_{1}+p_{2}+\mu_{1}+\right. \\
+ \\
+\mathbf{p}(n, 1,0) r_{2}+\mathbf{p}(n, 0,1) r_{1}, \quad \mathbf{p}(n-1,1,1) \mu_{1}+\mathbf{p}(n+1,1,1) \mu_{2} \\
\mathbf{p}(0,1,1)\left(p_{1}+\mu_{1}\right)= \\
\mathbf{p}(1,1,1) \mu_{2}+\mathbf{p}(0,1,0) r_{2}+\mathbf{p}(0,0,1) r_{1}
\end{array} \\
& \mathbf{p}(N, 1,1)\left(p_{2}+\mu_{2}\right)=\mathbf{p}(N-1,1,1) \mu_{1}+\mathbf{p}(N, 1,0) r_{2}+\mathbf{p}(N, 0,1) r_{1}
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

Performance measures

Efficiencies:

$$
\begin{aligned}
E_{1} & =\sum_{n=0}^{N-1} \sum_{\alpha_{2}=0}^{1} \mathbf{p}\left(n, 1, \alpha_{2}\right) \\
E_{2} & =\sum_{n=1}^{N} \sum_{\alpha_{1}=0}^{1} \mathbf{p}\left(n, \alpha_{1}, 1\right) .
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

Production rate:

$$
P=\mu_{1} E_{1}=\mu_{2} E_{2}
$$

Expected in-process inventory:

$$
\bar{n}=\sum_{n=0}^{N} \sum_{\alpha_{1}=0}^{1} \sum_{\alpha_{2}=0}^{1} n \mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right) .
$$

Two-Machine, Finite-Buffer Lines

Solution of balance equations

Assume

$$
\mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right)=c X^{n} Y_{1}^{\alpha_{1}} Y_{2}^{\alpha_{2}}, \quad 1 \leq n \leq N-1
$$

where c, X, Y_{1}, Y_{2} are parameters to be determined. Plugging this into the internal equations gives

$$
\begin{gathered}
p_{1} Y_{1}+p_{2} Y_{2}-r_{1}-r_{2}=0 \\
\mu_{1}\left(\frac{1}{X}-1\right)-p_{1} Y_{1}+r_{1}+\frac{r_{1}}{Y_{1}}-p_{1}=0 \\
\mu_{2}(X-1)-p_{2} Y_{2}+\frac{r_{2}}{Y_{2}}+r_{2}-p_{2}=0
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

 Exponential processing time model

These equations can be reduced to one fourth-order polynomial (quartic) equation in one unknown. One solution is

$$
\begin{aligned}
& Y_{11}=\frac{r_{1}}{p_{1}} \\
& Y_{21}=\frac{r_{2}}{p_{2}} \\
& X_{1}=1
\end{aligned}
$$

This solution of the quartic equation has a zero coefficient in the expression for the probabilities of the internal states:

$$
\mathbf{p}\left(n, \alpha_{1}, \alpha_{2}\right)=\sum_{j=1}^{4} c_{j} X_{j}^{n} Y_{1 j}^{\alpha_{1}} Y_{2 j}^{\alpha_{2}} \text { for } n=1, \ldots, N-1
$$

The other three solutions satisfy a cubic polynomial equation. Compare with slide 85. In general, there is no simple expression for them.

Two-Machine, Finite-Buffer Lines Exponential processing time model

Just as for the deterministic processing time line,

- we obtain the coefficients $c_{1}, c_{2}, c_{3}, c_{4}$ from the boundary conditions and the normalization equation;
- we find $c_{1}=0$; (What does this mean? Why is this true?)
- we construct all the boundary probabilities. Some are 0.
- we use the probabilities to evaluate production rate, average buffer level, etc;
- we prove statements about conservation of flow, flow rate-idle time, limiting values of some quantities, etc.
- we draw graphs, and observe behavior which is qualitatively very similar to deterministic processing time line behavior (e.g., P vs. N, \bar{n} vs N, etc.).

We also draw some new graphs (P vs. μ_{i}, \bar{n} vs μ_{i}) and observe new behavior. This is discussed below with the discussion of continuous material lines.

Two-Machine, Finite-Buffer Lines

 Continuous Material model

Continuous material, or fluid: deterministic processing, exponential failure and repair time; mixed state, continuous time.; continuous material.

- $\mu_{i} \delta t=$ the amount of material that M_{i} processes, while it is up, in $(t, t+\delta t)$;
- $p_{i} \delta t=$ the probability that M_{i} fails, while it is up, in $(t, t+\delta t)$;
- $r_{i} \delta t=$ the probability that M_{i} is repaired, while it is down, in $(t, t+\delta t)$;

Two-Machine, Finite-Buffer Lines

Model assumptions, notation, terminology, and conventions
During time interval $(t, t+\delta t)$:
When $0<x<N$

1. the change in x is $\left(\alpha_{1} \mu_{1}-\alpha_{2} \mu_{2}\right) \delta t$
2. the probability of repair of Machine i, that is, the probability that $\alpha_{i}(t+\delta t)=1$ given that $\alpha_{i}(t)=0$, is $r_{i} \delta t$
3. the probability of failure of Machine i, that is, the probability that $\alpha_{i}(t+\delta t)=0$ given that $\alpha_{i}(t)=1$, is $p_{i} \delta t$.

Two-Machine, Finite-Buffer Lines

When $x=0$

1. the change in x is $\left(\alpha_{1} \mu_{1}-\alpha_{2} \mu_{2}\right)^{+} \delta t$
(That is, when $x=0$, it can only increase.)
2. the probability of repair is $r_{i} \delta t$
3. if Machine 1 is down, Machine 2 cannot fail. If Machine 1 is up, the probability of failure of Machine 2 is $p_{2}^{b} \delta t$, where

$$
p_{2}^{b}=\frac{p_{2} \mu}{\mu_{2}}, \quad \mu=\min \left(\mu_{1}, \mu_{2}\right)
$$

The probability of failure of Machine 1 is $p_{1} \delta t$.

Two-Machine, Finite-Buffer Lines

When $x=N$

1. the change in x is $\left(\alpha_{1} \mu_{1}-\alpha_{2} \mu_{2}\right)^{-} \delta t$
2. the probability of repair is $r_{i} \delta t$
3. if Machine 2 is down, Machine 1 cannot fail. If Machine 2 is up, the probability of failure of Machine 1 is $p_{1}^{b} \delta t$, where

$$
p_{1}^{b}=\frac{p_{1} \mu}{\mu_{1}}
$$

The probability of failure of Machine 2 is $p_{2} \delta t$.

Two-Machine, Finite-Buffer Lines

Transition equations - internal
$f\left(x, \alpha_{1}, \alpha_{2}, t\right) \delta x+o(\delta x)$ is the probability of the buffer level being between x and $x+\delta x$ and the machines being in states α_{1} and α_{2} at time t.

Transitions into ($[x, x+\delta x], 1,1$)
$(0,0)$
$(0,1)$
$(1,0)$
$(1,1)$

Two-Machine, Finite-Buffer Lines

Then

$$
\begin{aligned}
f(x, 1,1, t+\delta t)= & \left(1-\left(p_{1}+p_{2}\right) \delta t\right) f\left(x-\mu_{1} \delta t+\mu_{2} \delta t, 1,1, t\right) \\
& +r_{1} \delta t f\left(x+\mu_{2} \delta t, 0,1, t\right)+r_{2} \delta t f\left(x-\mu_{1} \delta t, 1,0, t\right) \\
& +o(\delta t)
\end{aligned}
$$

or

$$
\begin{gathered}
f(x, 1,1, t+\delta t)= \\
\left(1-\left(p_{1}+p_{2}\right) \delta t\right)\left(f(x, 1,1, t)+\frac{\partial f}{\partial x}(x, 1,1, t)\left(-\mu_{1} \delta t+\mu_{2} \delta t\right)\right) \\
+r_{1} \delta t f\left(x+\mu_{2} \delta t, 0,1, t\right)+r_{2} \delta t f\left(x-\mu_{1} \delta t, 1,0, t\right)+o(\delta t)
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

or

$$
\begin{gathered}
f(x, 1,1, t+\delta t)= \\
\left(1-\left(p_{1}+p_{2}\right) \delta t\right)\left(f(x, 1,1, t)+\frac{\partial f}{\partial x}(x, 1,1, t)\left(\mu_{2}-\mu_{1}\right) \delta t\right) \\
+r_{1} \delta t\left(f(x, 0,1, t)+\frac{\partial f}{\partial x}(x, 0,1, t) \mu_{2} \delta t\right) \\
+r_{2} \delta t\left(f(x, 1,0, t)-\frac{\partial f}{\partial x}(x, 1,0, t) \mu_{1} \delta t\right)+o(\delta t)
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

or

$$
\begin{gathered}
f(x, 1,1, t+\delta t)= \\
f(x, 1,1, t)-\left(p_{1}+p_{2}\right) f(x, 1,1, t) \delta t+\left(\mu_{2}-\mu_{1}\right) \frac{\partial f}{\partial x}(x, 1,1, t) \delta t \\
+r_{1} f(x, 0,1, t) \delta t+r_{2} f(x, 1,0, t) \delta t
\end{gathered}
$$

or, finally,

$$
\begin{aligned}
\frac{\partial f}{\partial t}(x, 1,1)=- & \left(p_{1}+p_{2}\right) f(x, 1,1)+\left(\mu_{2}-\mu_{1}\right) \frac{\partial f}{\partial x}(x, 1,1) \\
& +r_{1} f(x, 0,1)+r_{2} f(x, 1,0)
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

Similarly,

$$
\begin{gathered}
\frac{\partial f}{\partial t}(x, 0,0)=-\left(r_{1}+r_{2}\right) f(x, 0,0)+p_{1} f(x, 1,0)+p_{2} f(x, 0,1) \\
\frac{\partial f}{\partial t}(x, 0,1)=\mu_{2} \frac{\partial f}{\partial x}(x, 0,1)-\left(r_{1}+p_{2}\right) f(x, 0,1)+p_{1} f(x, 1,1)+r_{2} f(x, 0,0) \\
\frac{\partial f}{\partial t}(x, 1,0)=-\mu_{1} \frac{\partial f}{\partial x}(x, 1,0)-\left(p_{1}+r_{2}\right) f(x, 1,0)+p_{2} f(x, 1,1)+r_{1} f(x, 0,0)
\end{gathered}
$$

Two-Machine, Finite-Buffer Lines

Transition equations - boundary
$\mathbf{p}\left(x, \alpha_{1}, \alpha_{2}, t\right)$ is the probability of the buffer level being x (where $x=0$ or N) and the machines being in states α_{1} and α_{2} at time t.

Boundary equations describe transitions from boundary states to boundary states; from boundary states to interior states; and from interior states to boundary states.

Boundary equations are relationships among $\mathbf{p}\left(x, \alpha_{1}, \alpha_{2}, t\right)$ and $f\left(x, \alpha_{1}, \alpha_{2}, t\right)$ and their derivatives for $x=0$ or $x=N$.

Two-Machine, Finite-Buffer Lines

We must construct an equation of the form

$$
\mathbf{p}(0,0,0, t+\delta t)=\mathbf{p}(0,0,0, t)+A \delta t+o(\delta t)
$$

Two-Machine, Finite-Buffer Lines

Transitions from boundary states into $(0,0,0)$

The system can go from $(0,0,0)$ to $(0,0,0)$ if there is no repair. It can go from $(0,1,0)$ if the first machine does not fail.

It cannot go from $(0,0,1)$ to $(0,0,0)$ because the second machine is starved and cannot fail. To go from $(0,1,1)$ to $(0,0,0)$ require two simultaneous failures, which has a probability on the order of δt^{2}.

Two-Machine, Finite-Buffer Lines

Transitions from internal states into $(0,0,0)$

To go from $\left(x, \alpha_{1}, \alpha_{2}\right), x>0$ to ($0,0,0$), we must have

$$
0<x<\alpha_{2} \mu_{2} \delta t-\alpha_{1} \mu_{1} \delta t
$$

For example, if $\alpha_{1}=0$ and $\alpha_{2}=1$, we are considering transitions from ($x, 0,1$) to $(0,0,0)$ where $0<x<\mu_{2} \delta t$.

Two-Machine, Finite-Buffer Lines

But
prob $\left(\left[0<x<\mu_{2} \delta t\right], 0,1\right)=f(x, 0,1) \mu_{2} \delta t+o(\delta t)=f(0,0,1) \mu_{2} \delta t+o(\delta t)$
and the transition probability from $(0,1)$ to $(0,0)$ is

$$
\left(1-r_{1} \delta t\right) p_{2} \delta t+o(\delta t)=p_{2} \delta t+o(\delta t) .
$$

Two-Machine, Finite-Buffer Lines

Transitions from internal states into $(0,0,0)$

Therefore, the probability of going from $\left(\left[0<x<\mu_{2} \delta t\right], 0,1\right)$ to $(0,0,0)$ is

$$
f(x, 0,1) \mu_{2} p_{2} \delta t^{2}+(\delta t) o(\delta t)=o(\delta t)
$$

For other transitions from $\left(x, \alpha_{1}, \alpha_{2}\right), x>0$ to $(0,0,0)$, the probabilities are similar or smaller.

Two-Machine, Finite-Buffer Lines

Therefore

$$
\mathbf{p}(0,0,0, t+\delta t)=\left(1-r_{1} \delta t-r_{2} \delta t\right) \mathbf{p}(0,0,0, t)+\mathbf{p}(0,1,0, t) p_{1} \delta t
$$

or

$$
\frac{d}{d t} \mathbf{p}(0,0,0)=-\left(r_{1}+r_{2}\right) \mathbf{p}(0,0,0)+p_{1} \mathbf{p}(0,1,0)
$$

Two-Machine, Finite-Buffer Lines

Consider state $(0,1,0)$. As soon as the system enters this state, it leaves. This is because x must immediately increase. Therefore

$$
\mathbf{p}(0,1,0)=0
$$

even if the system is not in steady state. Therefore

$$
\frac{d}{d t} \mathbf{p}(0,0,0)=-\left(r_{1}+r_{2}\right) \mathbf{p}(0,0,0)
$$

In steady state,

$$
\mathbf{p}(0,0,0)=0
$$

Two-Machine, Finite-Buffer Lines

$$
\begin{aligned}
\mathbf{p}(0,0,1, t+\delta t)= & r_{2} \delta t \mathbf{p}(0,0,0, t)+\left(1-r_{1} \delta t\right) \mathbf{p}(0,0,1, t) \\
& +p_{1} \delta t \mathbf{p}(0,1,1, t)+\int_{0}^{\mu_{2} \delta t} f(x, 0,1, t) d x
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

or,

$$
\frac{d}{d t} \mathbf{p}(0,0,1)=r_{2} \mathbf{p}(0,0,0)-r_{1} \mathbf{p}(0,0,1)+p_{1} \mathbf{p}(0,1,1)+\mu_{2} f(0,0,1) .
$$

Two-Machine, Finite-Buffer Lines

$$
\begin{aligned}
\mathbf{p}(0,1,1, t+\delta t)= & \left(1-\left(p_{1}+p_{2}^{b}\right) \delta t\right) \mathbf{p}(0,1,1, t)+r_{1} \delta t \mathbf{p}(0,0,1, t) \\
& +\int_{0}^{\left(\mu_{2}-\mu_{1}\right) \delta t} f(x, 1,1, t) d x
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

$$
\begin{aligned}
\frac{d}{d t} \mathbf{p}(0,1,1)= & -\left(p_{1}+p_{2}^{b}\right) \mathbf{p}(0,1,1)+r_{1} \mathbf{p}(0,0,1) \\
& +\left(\mu_{2}-\mu_{1}\right) f(0,1,1), \text { if } \mu_{1} \leq \mu_{2}
\end{aligned}
$$

Two-Machine, Finite-Buffer Lines

Transitions into ($0,1,1$), $\mu_{2} \leq \mu_{1}$
If $x(t)=0$, the transition from any $\left(\alpha_{1}(t), \alpha_{2}(t)\right)$ to
$\left(\alpha_{1}(t+\delta t), \alpha_{2}(t+\delta t)\right)=(1,1)$ would cause x to increase immediately. Therefore

$$
\mathbf{p}(0,1,1)=0
$$

Two-Machine, Finite-Buffer Lines

To come:

- Other boundary equations
- Normalization

$$
\sum_{\alpha_{1}=0}^{1} \sum_{\alpha_{2}=0}^{1}\left[\int_{0}^{N} f\left(x, \alpha_{1}, \alpha_{2}\right) d x+\mathbf{p}\left(0, \alpha_{1}, \alpha_{2}\right)+\mathbf{p}\left(N, \alpha_{1}, \alpha_{2}\right)\right]=1
$$

- Production rate

$$
\begin{aligned}
& P_{2}=\mu_{2}\left[\int_{0}^{N}(f(x, 0,1)+f(x, 1,1)) d x+p(N, 1,1)\right]+\mu_{1} \mathbf{p}(0,1,1) \\
= & P_{1}=\mu_{1}\left[\int_{0}^{N}(f(x, 1,0)+f(x, 1,1)) d x+\mathbf{p}(0,1,1)\right]+\mu_{2} \mathbf{p}(N, 1,1)
\end{aligned}
$$

- Average in-process inventory

$$
\bar{x}=\sum_{\alpha_{1}=0}^{1} \sum_{\alpha_{2}=0}^{1}\left[\int_{0}^{N} x f\left(x, \alpha_{1}, \alpha_{2}\right) d x+N \mathbf{p}\left(N, \alpha_{1}, \alpha_{2}\right)\right] .
$$

Two-Machine, Finite-Buffer Lines

Also to come:

- Identities (in steady state)
- Conservation of flow; Blocking, Starvation, and Production Rate; Repair frequency equals failure frequency; Flow Rate-Idle Time; Limits
- Solution technique
- Internal solution; transient states;

$$
f\left(x, \alpha_{1}, \alpha_{2}\right)=C e^{\lambda x} Y_{1}^{\alpha_{1}} Y_{2}^{\alpha_{2}}
$$

Cases $\left(\mu_{1}<\mu_{2}, \mu_{1}=\mu_{2}, \mu_{1}>\mu_{2}\right)$; boundary probabilities

Two-Machine, Finite-Buffer Lines

Exponential and continuous line performance

- $r_{1}=0.09, p_{1}=0.01, \mu_{1}=1.1$
- $r_{2}=0.08, p_{1}=0.009$
- $N=20$
- Explain the shapes of the graphs.

Two-Machine, Finite-Buffer Lines

Exponential and continuous line performance

- Explain the shapes of the graphs.

Two-Machine, Finite-Buffer Lines

Exponential and continuous line performance

The no-variability limit:
Consider a new continuous-material two-machine line. It is has parameters $\mu_{1}^{\prime}, r_{1}^{\prime}, p_{1}^{\prime}, \mu_{2}^{\prime}, r_{2}^{\prime}, p_{2}^{\prime}, N^{\prime}$. Assume it is perfectly reliable and its machines have the same isolated production rates as those of the first continuous-material two-machine line. It also has the same buffer size.
Its parameters are therefore given by

$$
\begin{array}{lll}
\mu_{1}^{\prime}=\rho_{1} ; & r_{1}^{\prime} \text { unspecified; } & p_{1}^{\prime}=0 ; \quad N^{\prime}=N \\
\mu_{2}^{\prime}=\rho_{2} ; & r_{2}^{\prime} \text { unspecified; } & p_{2}^{\prime}=0
\end{array}
$$

where

$$
\rho_{i}=\mu_{i} \frac{r_{i}}{r_{i}+p_{i}}
$$

Two-Machine, Finite-Buffer Lines

Exponential and continuous line performance

Two-Machine, Finite-Buffer Lines

Exponential and continuous line performance

Exponential and Continuous Two-Machine Lines

Two-Machine, Finite-Buffer Lines

 Continuous material and Deterministic Processing Time Lines

INTUITIVE EXRANATION OF TRANSFOMATION

Figure 6.8 in Schick, Irvin C. "Analysis of a multistage transfer line with unreliable components and interstage buffer storages with applications to chemical engineering problems." Master's thesis, MIT, 1978.

Two-Machine, Finite-Buffer Lines

 Continuous material and Deterministic Processing Time Lines
delta transformation

MIT OpenCourseWare
http://ocw.mit.edu

2.852 Manufacturing Systems Analysis

Spring 2010

For information about citing these materials or our Terms of Use,visit:http://ocw.mit.edu/terms.

