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Long Lines 

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6 

◮ Difficulty: 

◮ No simple formula for calculating production rate or inventory levels. 

◮ State space is too large for exact numerical solution. 

◮ If all buffer sizes are N and the length of the line is k , the number of 
states is S = 2k (N + 1)k−1 . 

◮ if N = 10 and k = 20, S = 6.41 × 1025 . 

◮ Decomposition seems to work successfully. 
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Decomposition — Concept 

Decomposition works for many kinds of systems, and extending it is an 
active research area. 

◮ We start with deterministic processing time lines. 

◮ Then we extend decomposition to other lines. 

◮ Then we extend it to assembly/disassembly systems without loops. 

◮ Then we look at systems with loops. 

◮ Etc., etc. if there is time. 
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Decomposition — Concept 

◮ Conceptually: put an observer in a buffer, and tell him that he is in 
the buffer of a two-machine line. 

◮ Question: What would the observer see, and how can he be convinced 
he is in a two-machine line? 
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Decomposition — Concept 

◮ Decomposition breaks up systems and then reunites them. 

◮ Construct all the two-machine lines. 
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Decomposition — Concept 

◮ Evaluate the performance measures (production rate, average buffer 
level) of each two-machine line, and use them for the real line. 

◮ This is an approximation; the behavior of the flow in the buffer of a 
two-machine line is not exactly the same as the behavior of the flow 
in a buffer of a long line. 

◮ The two-machine lines are sometimes called building blocks. 
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Decomposition — Concept 

◮ Consider an observer in Buffer Bi . 

◮ Imagine the material flow process that the observer sees entering and 
the material flow process that the observer sees leaving the buffer. 

◮ We construct a two-machine line L(i) 

◮ (ie, we find machines Mu(i) and Md (i) with parameters ru (i), pu (i), 
rd (i), pd (i), and N(i) = Ni ) 

such that an observer in its buffer will see almost the same processes. 

◮ The parameters are chosen as functions of the behaviors of the other 
two-machine lines. 
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Decomposition — Concept 
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Decomposition — Concept 

There are 4(k − 1) unknowns for the deterministic processing time line: 

ru(1), pu (1), rd (1), pd (1), 

ru(2), pu (2), rd (2), pd (2), 

..., 

ru (k − 1), pu (k − 1), rd (k − 1), pd (k − 1) 

Therefore, we need 

◮ 4(k − 1) equations, and 

◮ an algorithm for solving those equations. 
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Decomposition Equations 
Overview 

The decomposition equations relate ru (i), pu(i), rd (i), and pd (i) to behavior in 
the real line and in other two-machine lines. 

◮ Conservation of flow, equating all production rates. 

◮ Flow rate/idle time, relating production rate to probabilities of starvation 
and blockage. 

◮ Resumption of flow, relating ru (i) to upstream events and rd (i) to 
downstream events. 

◮ Boundary conditions, for parameters of Mu(1) and Md (k − 1). 

2.852 Manufacturing Systems Analysis 10/91 Copyright c©2010 Stanley B. Gershwin.



Decomposition Equations 
Overview 

◮ All the quantities in all these equations are 

◮ specified parameters, or 

◮ unknowns, or 

◮ functions of parameters or unknowns derived from the two-machine line 
analysis. 

◮ This is a set of 4(k − 1) equations. 
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Decomposition Equations 
Overview 

Notation convention: 

◮ Items that pertain to two-machine line L(i) will have i in parentheses. 
Example: ru(i). 

◮ Items that pertain to the real line L will have i in the subscript. 
Example: ri . 
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Decomposition Equations 
Conservation of Flow 

E (i) = E (1), i = 2, . . . , k − 1. 

◮ Recall that E (i) is a function of the unknowns ru(i), pu(i), rd (i), and 
pd (i). 

◮ (It is also a function of N(i), but N(i) is known.) 

◮ We know how to evaluate it easily, but we don’t have a simple 
expression for it. 

This is a set of k − 2 equations. 
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Decomposition Equations 
Flow Rate-Idle Time 

Ei = ei prob [ni−1 > 0 and ni < Ni ] 

where 
ei = 

ri 
ri + pi 

Problem: 

◮ This expression involves a joint probability of two buffers taking 
certain values at the same time. 

◮ But we only know how to evaluate two-machine, one-buffer lines, so 
we only know how to calculate the probability of one buffer taking on 
a certain value at a time. 
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Decomposition Equations 
Flow Rate-Idle Time 

Observation: 

prob (ni−1 = 0 and ni = Ni ) ≈ 0. 

Reason: 
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The only way to have ni−1 = 0 and ni = Ni is if 

◮ Mi−1 is down or starved for a long time 

◮ and Mi is up 

◮ and Mi+1 is down or blocked for a long time 

◮ and to have exactly Ni parts in the two buffers. 
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Decomposition Equations 
Flow Rate-Idle Time 

Then 
prob [ni−1 > 0 and ni < Ni ] 

= prob [NOT {ni−1 = 0 or ni = Ni }] 

= 1 − prob [ni−1 = 0 or ni = Ni ] 

= 1 − { prob (ni−1 = 0) + prob (ni = Ni ) 
− prob (ni−1 = 0 and ni = Ni )} 

≈ 1 − { prob (ni−1 = 0) + prob (ni = Ni )} 
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Decomposition Equations 
Flow Rate-Idle Time 

Therefore 

Ei ≈ ei [1 − prob (ni−1 = 0) − prob (ni = Ni )] 

Note that 

prob (ni−1 = 0) = ps (i − 1); prob (ni = Ni ) = pb(i) 

Two of the FRIT relationships in lines L(i − 1) and L(i) are 

E (i) = eu(i) [1 − pb(i)] ; E (i − 1) = ed (i − 1) [1 − ps (i − 1)] 
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Decomposition Equations 
Flow Rate-Idle Time 

or, 

ps (i − 1) = 1 − 
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eu (i) 
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Decomposition Equations 
Flow Rate-Idle Time 

Since 

ed (i − 1) = 
rd (i − 1) 

pd (i − 1) + rd (i − 1)
; eu(i) = 

ru (i) 

pu (i) + ru(i)
, 

we can write 

pd (i − 1) 

rd (i − 1) 
+ 

pu (i) 

ru (i) 
= 

1 

E (i) 
+ 

1 

ei 
− 2, i = 2, . . . , k − 1 

This is a set of k − 2 equations. 
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Decomposition Equations 
Resumption of Flow 
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When the observer sees Mu(i) down, Mi may actually be down... 
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Decomposition Equations 
Resumption of Flow 

M 
i+1 

B
i+1 

M 
i+2i+2 

BM 
i−4 

B
i−4 

M 
i−3i−3 

B 

M (i)
u 

M (i)
d 

M 
i−2 

B
i−2 

M 
i−1 

B
i−1 

B
i 

M 
i+3

M 
i 

0 

... or, Mi−1 may be down and Bi−1 may be empty, ... 
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Decomposition Equations 
Resumption of Flow 
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... or Mi−2 may be down and Bi−1 and Bi−2 may be empty, ... 
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Decomposition Equations 
Resumption of Flow 
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... or Mi−3 may be down and Bi−1 and Bi−2 and Bi−3 may be empty, ... 
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Decomposition Equations 
Resumption of Flow 
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... etc. 
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Decomposition Equations 
Resumption of Flow 
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Similarly for the observer in Bi−1. 
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Decomposition Equations 
Resumption of Flow 
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Comparison 
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Decomposition Equations 
Resumption of Flow 
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Decomposition Equations 
Resumption of Flow 
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Decomposition Equations 
Resumption of Flow 
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Decomposition Equations 
Resumption of Flow 

That is, when the Line L(i) observer sees a failure in Mu(i), 
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◮ or Buffer Bi−1 is empty and the Line L(i − 1) observer sees a failure in 
Mu(i − 1). 
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Note that these two events are mutually exclusive. Why? 
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Decomposition Equations 
Resumption of Flow 

Also, for the Line L(j) observer to see Mu(j) up, Mj must be up and Bj−1 must 
be non-empty. Therefore, 

{αu(j , τ) = 1} ⇐⇒ {αj (τ) = 1} and {nj−1(τ − 1) > 0} 

{αu(j , τ) = 0} ⇐⇒ {αj (τ) = 0} or {nj−1(τ − 1) = 0} 
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Decomposition Equations 
Resumption of Flow 

Then 

ru (i) = prob [αu (i , t + 1) = 1 | αu(i , t) = 0] 

= prob 

[ 

{αi (t + 1) = 1} and {ni−1(t) > 0} 

{αi (t) = 0} or {ni−1(t − 1) = 0} 

] 
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Decomposition Equations 
Resumption of Flow 

To express ru (i) in terms of quantities we know or can find, we have to simplify 
prob (U|V or W ), where 

U = {αi (t + 1) = 1} and {ni−1(t) > 0} 

V = {αi (t) = 0} 

W = {ni−1(t − 1) = 0} 

Important: V and W are disjoint. 

prob (V and W ) = 0. 
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Decomposition Equations 
Resumption of Flow 

prob (U|V or W ) = 
prob (U and (V or W )) 

prob (V or W ) 

= 
prob ((U and V ) or (U and W )) 

prob (V or W ) 

= 
prob (U and V ) 

prob (V or W ) 
+ 

prob (U and W ) 

prob (V or W ) 

= 
prob (U|V )prob (V ) 

prob (V or W ) 
+ 

prob (U|W )prob (W ) 

prob (V or W ) 
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Decomposition Equations 
Resumption of Flow 

= prob (U|V ) 
prob (V ) 

prob (V or W )
+ prob (U|W ) 

prob (W ) 

prob (V or W ) 

Note that 

prob (V |V or W ) = 
prob (V and (V or W )) 

prob (V or W ) 
= 

prob (V ) 

prob (V or W ) 

so 

prob (U|V or W ) = prob (U|V )prob (V |V or W ) 

+prob (U|W )prob (W |V or W ). 
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Decomposition Equations 
Resumption of Flow 

Then, if we plug U, V , and W from Slide 33 into this, we get 

ru (i) = A(i − 1)X (i) + B(i)X ′ (i), i = 2, . . . , k − 1 

where 

A(i − 1) = prob (U|W ) 

= prob 

[ 

ni−1(t) > 0 and αi (t + 1) = 1 

∣ 

∣ 

∣ 

∣ 

ni−1(t − 1) = 0 

] 

, 
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Decomposition Equations 
Resumption of Flow 

X (i) = prob (W |V or W ) 

= prob 

[ 

ni−1(t − 1) = 0 

∣ 

∣ 

∣ 

∣ 

ni−1(t − 1) = 0 or αi (t) = 0 

] 

, 

B(i) = prob (U|V ) 
= prob [ni−1(t) > 0 and αi (t + 1) = 1 | αi (t) = 0] , 

X ′ (i) = prob (V |V or W ) 
= prob [αi (t) = 0 | {ni−1(t − 1) = 0 or αi (t) = 0}] . 
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Decomposition Equations 
Resumption of Flow 

To evaluate 

A(i − 1) = prob 

» 

ni−1(t) > 0 and αi (t + 1) = 1 

˛ 
˛ 
˛ 
˛ ni−1(t − 1) = 0 

– 

: 

Note that 

◮ For Buffer i − 1 to be empty at time t − 1, Machine Mi must be up at time t − 1 
and also at time t. It must have been up in order to empty the buffer, and it must 
stay up because it cannot fail. Therefore αi (t) = 1. 

◮ For Buffer i − 1 to be non-empty at time t after being empty at time t − 1, it 
must have gained 1 part. For it to gain a part when αi (t) = 1, Mi must not have 
been working (because it was previously starved). Therefore, Mi could not have 
failed and A(i − 1) can therefore be written 

A(i − 1) = prob 

» 

ni−1(t) > 0 

˛ 
˛ 
˛ 
˛ ni−1(t − 1) = 0 

– 
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Decomposition Equations 
Resumption of Flow 

A(i − 1) = prob 

» 

ni−1(t) > 0 

˛ 
˛ 
˛ 
˛ ni−1(t − 1) = 0 

– 

◮ For Buffer i − 1 to be empty, Mi−1 must be down or starved. For Mi−1 to be 
starved, Mi−2 must be down or starved, etc. Therefore, saying Mi−1 is down or 
starved is equivalent to saying Mu (i − 1) is down. That is, if ni−1(t − 1) = 0 then 
αu (i − 1, t − 1) = 0. 

◮ Conversely, for Buffer i − 1 to be non-empty, Mi−1 must not be down or starved. 
That is, if ni−1(t) > 0, then αu (i − 1, t) = 1. 

Therefore, 

A(i − 1) = prob 

» 

αu (i − 1, t) = 1 

˛ 
˛ 
˛ 
˛ αu (i − 1, t − 1) = 0 

– 

= ru (i − 1) 
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Decomposition Equations 
Resumption of Flow 

Similarly, 

B(i) = prob [ni−1(t) > 0 and αi (t + 1) = 1 | αi (t) = 0] 

Note that if αi (t) = 0, we must have ni−1(t) > 0. Therefore 

B(i) = prob [αi (t + 1) = 1 | αi (t) = 0] , 

or, 
B(i) = ri 

so 

ru (i) = ru (i − 1)X (i) + ri X 
′ (i), 
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Decomposition Equations 
Resumption of Flow 

Interpretation so far: 

◮ ru(i), the probability that Mu(i) goes from down to up, is 

◮ ri times the probability that Mu(i) is down because Mi is down 

◮ plus ru(i − 1) times the probability that Mu(i) is down because 
Mu(i − 1) is down and Bi−1 is empty. 
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Decomposition Equations 
Resumption of Flow 

X (i)= the probability that Mu(i) is down because Mu(i − 1) is down and Bi−1 is 
empty; 

X ′ (i) = the probability that Mu(i) is down because Mi is down. 

Since these are the only two ways that Mu(i) can be down, 

X ′ (i) = 1 − X (i) 
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Decomposition Equations 
Resumption of Flow 

X (i) = prob 

[ 

ni−1(t − 1) = 0 

∣ 

∣ 

∣ 

∣ 

ni−1(t − 1) = 0 or αi (t) = 0 

] 

= 
prob [ni−1(t − 1) = 0 and {ni−1(t − 1) = 0 or αi (t) = 0}] 

prob [ni−1(t − 1) = 0 or αi (t) = 0] 

= 
prob [ni−1(t − 1) = 0] 

prob [ni−1(t − 1) = 0 or αi (t) = 0] 

= 
ps (i − 1) 

prob [ni−1(t − 1) = 0 or αi (t) = 0] 
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Decomposition Equations 
Resumption of Flow 

To analyze the denominator, note 

◮ {ni−1(t − 1) = 0 or αi (t) = 0} = {αu (i) = 0} by definition; 

◮ prob [ni−1(t − 1) = 0 or αi (t) = 0] ≈ 
prob [{ni−1(t − 1) = 0 or αi (t) = 0} and ni (t − 1) < Ni ] because 
prob [ni−1(t − 1) = 0 and ni (t − 1) = Ni ] ≈ 0 

so the denominator is, approximately, 

prob [αu (i) = 0 and ni (t − 1) < Ni ] 

Recall that this is equal to 

pu (i) 

ru (i)
prob [αu (i) = 1 and ni (t − 1) < Ni ] = 

pu (i) 

ru (i) 
E(i) 
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Decomposition Equations 
Resumption of Flow 

Therefore, 

X (i) = 
ps (i − 1)ru(i) 

pu(i)E (i) 

and 

ru (i) = ru (i − 1)X (i) + ri (1 − X (i)), i = 2, . . . , k − 1 

This is a set of k − 2 equations. 
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Decomposition Equations 
Resumption of Flow 

By the same logic, 

rd (i − 1) = rd (i)Y (i) + ri (1 − Y (i)), i = 2, . . . , k − 1 

where 

Y (i) = 
pb(i)rd (i − 1) 

pd (i − 1)E (i − 1) 
. 

This is a set of k − 2 equations. 

We now have 4(k − 2) = 4k − 8 equations. 
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Decomposition Equations 
Boundary Conditions 

Md (1) is the same as M1 and Md (k − 1) is the same as Mk . Therefore 

ru(1) = r1 

pu(1) = p1 

rd (k − 1) = rk 

pd (k − 1) = pk 

This is a set of 4 equations. 

We now have 4(k − 1) equations in 4(k − 1) unknowns ru(i), pu(i), rd (i), pd (i), 
i = 1, ..., k − 1. 
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Decomposition Equations 
Algorithm 

FRIT: 
pd (i − 1) 

rd (i − 1) 
+ 

pu (i) 

ru (i) 
= 

1 

E(i) 
+ 

1 

ei 
− 2 

Upstream equations: 

ru (i) = ru (i − 1)X (i) + ri (1 − X (i)); X (i) = 
ps (i − 1)ru (i) 

pu (i)E(i) 

pu (i) = ru (i)

„ 
1 

E(i) 
+ 

1 

ei 
− 2 − 

pd (i − 1) 

rd (i − 1) 

« 

Downstream equations: 

rd (i) = rd (i + 1)Y (i + 1) + ri+1(1 − Y (i + 1)); Y (i + 1) = 
pb(i + 1)rd (i) 

pd (i)E(i) 
. 

pd (i) = rd (i)

„ 
1 

E(i + 1) 
+ 

1 

ei+1 
− 2 − 

pu (i + 1) 

ru (i + 1) 

« 
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Decomposition Equations 
Algorithm 

We use the conservation of flow conditions by modifying these equations. 

Modified upstream equations: 

ru (i) = ru (i − 1)X (i) + ri (1 − X (i)); X (i) = 
ps (i − 1)ru (i) 

pu (i)E(i − 1) 

pu (i) = ru (i)

„ 
1 

E(i − 1) 
+ 

1 

ei 
− 2 − 

pd (i − 1) 

rd (i − 1) 

« 

Modified downstream equations: 

rd (i) = rd (i + 1)Y (i + 1) + ri+1(1 − Y (i + 1)); Y (i + 1) = 
pb(i + 1)rd (i) 

pd (i)E(i + 1) 
. 

pd (i) = rd (i)

„ 
1 

E(i + 1) 
+ 

1 

ei+1 
− 2 − 

pu (i + 1) 

ru (i + 1) 

« 
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Decomposition Equations 
Algorithm 

Possible Termination Conditions: 

◮ |E (i) − E (1)| < ǫ for i = 2, ..., k − 1, or 

◮ The change in each ru(i), pu(i), rd (i), pd (i) parameter, 
i = 1, ..., k − 1 is less than ǫ, or 

◮ etc. 
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Decomposition Equations 
Algorithm 

DDX algorithm : due to Dallery, David, and Xie (1988). 

1. Guess the downstream parameters of L(1) (rd (1), pd (1)). Set i = 2. 

2. Use the modified upstream equations to obtain the upstream parameters of 
L(i) (ru (i), pu (i)). Increment i . 

3. Continue in this way until L(k − 1). Set i = k − 2. 

4. Use the modified downstream equations to obtain the downstream 
parameters of L(i). Decrement i . 

5. Continue in this way until L(1). 

6. Go to Step 2 or terminate. 
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Decomposition 
Approximations 

Is the decomposition exact? NO, because 

1. The behavior of the flow in the buffer of a two-machine line is not 
exactly the same as the behavior of the flow in a buffer of a long line. 

2. prob [ni−1(t − 1) = 0 and ni (t − 1) = Ni ] ≈ 0 

Question: When will this work well, and when will it work badly? 
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Examples 
Three-machine line 

Three-machine line – production rate. 
.8 

.7 

.6 

.5 

.4 

.3 

.2 

.1 

.1 .2 .3 .4 .5 .6 .7 
p3 

E 

p2 = .05 

.15 

.35 

.45 

.55 

.65 

.25 

r1 = r2 = r3 = .2 
p1 = .05 
N1 = N2 = 5 
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Examples 
Three-machine line 

Three-machine line – total average inventory 
p2 = .05 

.15 

.25 

.35 

.45 

.55 

.65 

p3 

0 .1 .2 .3 .4 .5 .6 .7 
2 

10 

9 

8 

6 

5 

4 

3 

7 
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r1 = r2 = r3 = .2 
p1 = .05 
N1 = N2 = 5 
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Examples 
Long lines
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l 

Buffer Number 

50 Machines; r=0.1; p=0.01; mu=1.0; N=20.0 

Distribution of 
material in a line 
with identical 
machines and buffers. 

Explain the shape. 
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Examples 
Long lines 

Analytical vs simulation 

Time steps Decomp 10,000 50,000 200,000 

Production rate 0.786 0.740 0.751 0.750

 4
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 0  5  10  15  20  25  30  35  40  45  50 
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Buffer number 

Analytic 
10,000 steps 
50,000 steps 

200,000 steps 

(Not the same line as in Slide 55.) 
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Examples 
Long lines
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Buffer Number 

50 Machines; r=0.1; p=0.01; mu=1.0; N=20.0 EXCEPT N(25)=2000.0 

Same as Slide 55 
except that Buffer 25 
is now huge. 

Explain the shape. 
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Examples 
Long lines
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Buffer Number 

25 Machines; r=0.1; p=0.01; mu=1.0; N=20.0 

Upstream half of 
Slide 57. 

Explain the shape. 
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Examples 
Long lines
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Buffer Number 

50 Machines; upstream r=0.1; p=0.01; mu=1.0; N=20.0; N(25)=2000.0 downstream r=0.15; p=0.01; mu=1.0, N=50.0 

Upstream same as 
Slide 58; downstream 
faster. 

Explain the shape. 
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Examples 
Long lines
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Buffer Number 

50 Machines; upstream r=0.1; p=0.01; mu=1.0; N=20.0; N(25)=2000.0 downstream r=0.09; p=0.01; mu=1.0, N=50.0 

Upstream same as 
Slide 58; downstream 
faster. 

Explain the shape. 
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Examples 
Long lines
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Buffer Number 

50 Machines; upstream r=0.1; p=0.01; mu=1.0; N=20.0; N(25)=2000.0 downstream r=0.09; p=0.01; mu=1.0, N=15.0 

Downstream same as 
downstream half of 
Slide 57; upstream 
faster. 

Explain the shape. 
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Examples 
Long lines
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Buffer Number 

26 Machines; r=0.1; p=0.01; mu=1.0, N=20.0 EXCEPT N(25)=2000.0, r(26)=.09, p(26)=0.032783 

Same as upstream 
half of Slide 61 
except for Machine 
26. 

Explain the shape. 
How was Machine 26 
chosen? 
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Examples 
Long lines — Bottlenecks
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Buffer Number 

50 Machines; r=0.1; p=0.01; mu=1.0; N=20.0 EXCEPT mu(10)=0.8 

Operation time 
bottleneck. Identical 
machines and buffers, 
except for M10. 

Explain the shape. 
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Examples 
Long lines — Bottlenecks
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l 

Buffer Number 

50 Machines; r=0.1; p=0.01; mu=1.0; N=20.0 EXCEPT p(10)=0.0375 

Failure time 
bottleneck. 

Explain the shape. 
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Examples 
Long lines — Bottlenecks
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Buffer Number 

50 Machines; r=0.1; p=0.01; mu=1.0; N=20.0 EXCEPT r(10)=0.02667 

Repair time 
bottleneck. 

Explain the shape. 
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Examples 
Infinitely long lines 

Infinitely long lines with identical machines and buffers 

ri = r 
pi = p 
Ni = N 

 

 

 

for each i ,−∞ < i < ∞. 

The observer in each buffer sees exactly the same behavior. Consequently, the 
decomposed pseudo-machines are all identical and symmetric. For each i , 

ru(i) = ru(i − 1) = rd (i) = rd (i − 1) 
pu(i) = pu(i − 1) = pd (i) = pd (i − 1). 
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Examples 
Infinitely long lines 

Resumption of flow says 

ru(i) = ru(i − 1)X (i) + ri (1 − X (i)) 
ru = ru X + r(1 − X ) 

so ru(i) = rd (i) = r . 

FRIT says 

pd (i−1) 
rd (i−1) + pu (i) 

ru (i) = 1 
E (i) + 1 

ei 
− 2 

2pu 
r = 1 

E + 1 
e − 2 
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Examples 
Infinitely long lines 

In the last equation, pu is unknown and E is a function of pu. This is one 
equation in one unknown. 
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Examples 
Effect of one buffer size on all buffer levels 
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Continuous material model. 

◮ Eight-machine, 
seven-buffer line. 

◮ For each machine, 
r = .075, p = .009, 
µ = 1.2. 

◮ For each buffer (except 
Buffer 6), N = 30. 

B2 M B3 3 M4M B1 1 M2 B4 M B5 5 M6 B6 M B7 7 M8 
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Examples 
Effect of one buffer size on all buffer levels 
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◮ Which n̄i are 
decreasing and 
which are 
increasing? 

◮ Why? 

B2 M B3 3 M4M B1 1 M2 B4 M B5 5 M6 B6 M B7 7 M8 
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Examples 
Buffer allocation 

Which has a higher production rate? 

◮ 9-Machine line with two buffering options: 

◮ 8 buffers equally sized; and 
M1 B4 M B5 5 M6 B6 M B7 M B8 8 M9B1 M B2 2 M B3 3 M4 7 

◮ 2 buffers equally sized. 

M5 M6B3 M7 M8 M9M1 M3M2 M4 B6 
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Examples 
Buffer allocation 

Total Buffer Space 

P 

0.65 

0.7 

0.75 

0.8 

0.85 
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0.95 
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0 1000 2000 3000 4000 5000 6000 7000 
0.650.650.65

8000800080008000 9000900090009000 10000100001000010000

8 buffers 

0.7
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0.8
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0.9
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1

0 1000 2000 3000 4000 5000 6000 7000

8 buffers8 buffers8 buffers
2 buffers 

0.7
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0.8

0.85

0.9
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1

0 1000 2000 3000 4000 5000 6000 7000

2 buffers

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1000 2000 3000 4000 5000 6000 7000

2 buffers

◮ Continuous model; all 
machines have 
r = .019, p = .001, 
µ = 1. 

◮ What are the 
asymptotes? 

◮ Is 8 buffers always 
faster? 
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Examples 
Buffer allocation 

P 

Total Buffer Space 

0.650.650.650.65

0.70.70.70.7

0.750.750.750.75

0.80.80.80.8

0.850.850.850.85

0.90.90.90.9

0.950.950.950.95

1111

1111 10101010 100100100100 1000100010001000 10000100001000010000

8 buffers8 buffers8 buffers8 buffers
2 buffers2 buffers2 buffers

◮ Is 8 buffers always 
faster? 

◮ Perhaps not, but 
difference is not 
significant in systems 
with very small buffers. 
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Long Lines — More Models 
Discrete Material Exponential Processing Time and Continuous 
Material Models 

◮ New issue: machines may operate at different speeds. 

◮ Blockage and starvation may be caused by differences in machine 
speeds, not only failures. 

◮ Decomposition of these classes of systems is similar to that of 
discrete-material, deterministic-processing time lines except 

◮ The two-machine lines have machines with 3 parameters (ru (i), pu(i), 
µu(i); rd (i), pd (i), µd (i)). More equations — 6(k − 1) — are therefore 
needed. 

◮ Exponential decomposition is described in the book in detail; 
continuous material decomposition was not developed until after book 
was written. 
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Long Lines — Exponential Processing Time Model 

The observer thinks he is in a two-machine exponential processing time line with 

parameters 

ru (i)δt = probability that Mu (i) goes from down to up in (t, t + δt), for small δt; 

pu (i)δt = probability that Mu (i) goes from up to down in (t, t + δt) 

if it is not blocked, for small δt; 

µu (i)δt = probability that a piece flows into Bi in (t, t + δt) 
when Mu (i) is up and not blocked, for small δt; 

rd (i)δt = probability that Md (i) goes from down to up in (t, t + δt), for small δt; 

pd (i)δt = probability that Md (i) goes from up to down in (t, t + δt) 

if it is not starved, for small δt; 

µd (i)δt = probability that a piece flows out of Bi in (t, t + δt) 
when Md (i) is up and not starved, for small δt. 
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Long Lines — Exponential Processing Time Model 
Equations 

We have 6(k − 1) unknowns, so we need 6(k − 1) equations. They are 

◮ Interruption of flow , relating pu (i) to upstream events and pd (i) to 
downstream events, 

◮ Resumption of flow, 

◮ Conservation of flow, 

◮ Flow rate/idle time, 

◮ Boundary conditions. 

All of these, except for the Interruption of Flow equations, are similar to those of 

the deterministic processing time case. 
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Long Lines — Exponential Processing Time Model 
Interruption of Flow 

The first two sets of equations describe the interruptions of flow caused by 
machine failures. By definition, 

pu(i)δt = prob 

[ 

αu(i ; t + δt) = 0 

∣ 

∣ 

∣ 

∣ 

αu (i ; t) = 1 and ni (t) < Ni 

] 

, 

or, 

pu(i)δt = prob 

[ 

Mu(i) down at t + δt 

∣ 

∣ 

∣ 

∣ 

Mu(i) up and ni < Ni at t 

] 

. 
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Long Lines — Exponential Processing Time Model 
Interruption of Flow 

We define the events that a pseudo-machine is up or down as follows: 

Mu(i) is down if 

1. Mi is down, or 

2. ni−1 = 0 and Mu(i − 1) is down. 

Mu(i) is up for all other states of the transfer line upstream of Buffer Bi . 
Therefore, Mu(i) is up if 

1. Mi is operational and ni−1 > 0, or 

2. Mi is operational, ni−1 = 0 and Mu(i − 1) is up. 
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Long Lines — Exponential Processing Time Model 
Interruption of Flow 

After a lot of equation manipulation, we get: 

pu(i) = pi + 
ru (i − 1)p(i − 1; 001) 

Eu(i) 
. 

and similarly, 

pd (i) = pi+1 + 
rd (i + 1)p(i + 1; N10) 

Ed (i) 
. 

in which p(i − 1; 001) is the steady state probability that line L(i − 1) is in state 

(0, 0, 1) and p(i + 1; N10) is the steady state probability that line L(i + 1) is in 

state (Ni+1, 1, 0). 
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Long Lines — Exponential Processing Time Model 
Resumption of Flow 

ru (i) = ru (i − 1)
pi−1(0, 0, 1)ru (i)µu (i) 

pu (i)P(i) 

+ri 

„

1 − 
pi−1(0, 0, 1)ru (i)µu (i) 

pu (i)P(i) 

« 

, 

i = 2, · · · , k − 1 

rd (i) = rd (i + 1)
pi+1(Ni+1, 1, 0)rd (i)µd (i) 

pd (i)P(i) 

+ri+1 

„

1 − 
pi+1(Ni+1, 1, 0)rd (i)µd (i) 

pd (i)P(i) 

« 

, 

i = 1, · · · , k − 2 
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Long Lines — Exponential Processing Time Model 
Conservation of Flow 

P(i) = P(1), i = 2, . . . , k − 1. 
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Long Lines — Exponential Processing Time Model 
Flow Rate/Idle Time 

The flow rate-idle time relationship is, approximately, 

Pi = ei µi (1 − prob [ni−1 = 0] − prob [ni = Ni ]) . 

which can be transformed into 

1 

ei µi 
+ 

1 

P 
= 

1 

ed (i − 1)µd (i − 1) 
+ 

1 

eu (i)µu(i)
; i = 2, . . . , k − 1. 
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Long Lines — Exponential Processing Time Model 
Flow Rate/Idle Time 

For the algorithm, we express it as 

µu(i) = 
1 

eu(i) 

{ 

1 
1 

P(i) + 1 
ei µi 

− 1 
ed (i−1)µd (i−1) 

} 

, 

i = 2, · · · , k − 1, 

µd (i) = 
1 

ed (i) 

{ 

1 
1 

P(i) + 1 
ei +1µi +1 

− 1 
eu (i+1)µu (i+1) 

} 

, 

i = 1, · · · , k − 2. 
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Long Lines — Exponential Processing Time Model 
Boundary Conditions 

Md (1) is the same as M1 and Md (k − 1) is the same as Mk . Therefore 

ru(1) = r1 

pu(1) = p1 

µu(1) = µ1 

rd (k − 1) = rk 

pd (k − 1) = pk 

µd (k − 1) = µk 
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Long Lines — Exponential Processing Time 
Example 

.25 

.20 

.10 

0 

0 .4 .8 1.2 1.6 1.8ρ2 

LINE PRODUCTION RATE 

(UNIT/TIME) 

Decomposition 

Simulation 

Upper Bound .258 

i Parameters 
ri pi µi Ni 

1 .05 .03 .5 8 
2 .06 .04 — 8 
3 .05 .03 .5 

◮ Exponential processing time line — 3 machines 

◮ Upper bound determined by smallest ρi . 

◮ Simulation satisfies upper bound; decomposition does not. Why? 
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Long Lines — Continuous Material 

M B1 1 M B2 2 M B3 3 M B4 4 M B5 5 M6 

Conceptually very similar to exponential processing time model. One 
difference: 

◮ prob (xi−1 = 0 and xi = Ni ) = 0 exactly . 

2.852 Manufacturing Systems Analysis 86/91 Copyright c©2010 Stanley B. Gershwin. 



                                        

Long Lines — Continuous Material Model 
New approximation 

◮ New approximation: The observer sees both pseudo-machines operating at 
multiple rates, but the two-machine lines assume single rates. 

M (i)
d 

r (i), p (i), (i)µu u u r (i), p (i), (i)µd d d 

M (i)
u 

If this were really a two-machine continuous material line, 

◮ material would enter the buffer at rate µu (i) (if Mu(i) is up and the buffer is 
not full) or µd (i) (if Mu(i) and Md (i) are up and the buffer is full and 
µd (i) < µu (i)) or 0; 

◮ material would exit the buffer at rate µd (i) (if Md (i) is up and the buffer is 
not empty) or µu(i) (if Mu(i) and Md (i) are up and the buffer is empty and 
µu(i) < µd (i)) or 0; 
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Long Lines — Continuous Material 
New approximation 

M 
i 

M (i)
u 

M (i)
d 

M 
i−2 

B
i−2 

M 
i−1 

B
i−1 

B
i 

M 
i+1 

B
i+1 

M 
i+2 

M 
i+3i+2 

B 

Assume that ... < µi−2 < µi−1 < µi < µi+1 < .... Assume all the machines are up and 
Bi is not full. Then the observer in Bi actually sees material entering Bi ... 

◮ at rate µi if Bi−1 is not empty; 

◮ at rate µi−1 if Bi−2 is not empty and Bi−1 is empty; 

◮ at rate µi−2 if Bi−3 is not empty and Bi−2 is empty and Bi−1 is empty; 

◮ etc. 

Therefore, this approximation may break down if the µi are very different. 
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Long Lines — Continuous Material 
Equations 

We have the same 6(k − 1) unknowns, so we need 6(k − 1) equations. They are, 
as before, 

◮ Interruption of flow , 

◮ Resumption of flow, 

◮ Conservation of flow, 

◮ Flow rate/idle time, 

◮ Boundary conditions. 

They are the same as in the exponential processing time case except for the 

Interruption of Flow equations. 
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Long Lines — Continuous Material 
Interruption of Flow 

Considerable manipulation leads to 

pu (i) = pi 

„

1 + 
pi−1(0, 1, 1)µu (i) 

P(i) − pi(Ni , 1, 1)µd (i)

„ 
µu (i − 1) 

µi 
− 1 

«« 

+ 

„ 
pi−1(0, 0, 1)µu (i) 

P(i) − pi(Ni , 1, 1)µd (i) 

« 

ru (i − 1), i = 2, · · · , k − 1 

and, similarly, 

pd (i) = pi+1 

„

1 + 
pi+1(Ni+1, 1, 1)µd (i) 

P(i) − pi(0, 1, 1)µu (i)

„ 
µd (i + 1) 

µi+1 
− 1) 

«« 

+ 

„ 
pi+1(Ni+1, 1, 0)µd (i + 1) 

P(i) − pi(0, 1, 1)µu (i) 

« 

rd (i + 1), i = 1, · · · , k − 2 
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To come 

◮ Assembly/Disassembly Systems 

◮ Buffer Optimization 

◮ Effect of Buffers on Quality 

◮ Loops 

◮ Real-Time Control 

◮ ???? 
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