MIT 2.852
 Manufacturing Systems Analysis
 Lecture 10-12
 Transfer Lines - Long Lines

Stanley B. Gershwin
http://web.mit.edu/manuf-sys
Massachusetts Institute of Technology

Spring, 2010

Long Lines

- Difficulty:
- No simple formula for calculating production rate or inventory levels.
- State space is too large for exact numerical solution.
- If all buffer sizes are N and the length of the line is k, the number of states is $S=2^{k}(N+1)^{k-1}$.
- if $N=10$ and $k=20, S=6.41 \times 10^{25}$.
- Decomposition seems to work successfully.

Decomposition - Concept

Decomposition works for many kinds of systems, and extending it is an active research area.

- We start with deterministic processing time lines.
- Then we extend decomposition to other lines.
- Then we extend it to assembly/disassembly systems without loops.
- Then we look at systems with loops.
- Etc., etc. if there is time.

Decomposition - Concept

i

- Conceptually: put an observer in a buffer, and tell him that he is in the buffer of a two-machine line.
- Question: What would the observer see, and how can he be convinced he is in a two-machine line?

Decomposition - Concept

- Decomposition breaks up systems and then reunites them.
- Construct all the two-machine lines.

Decomposition - Concept

- Evaluate the performance measures (production rate, average buffer level) of each two-machine line, and use them for the real line.
- This is an approximation; the behavior of the flow in the buffer of a two-machine line is not exactly the same as the behavior of the flow in a buffer of a long line.
- The two-machine lines are sometimes called building blocks.

Decomposition - Concept

- Consider an observer in Buffer B_{i}.
- Imagine the material flow process that the observer sees entering and the material flow process that the observer sees leaving the buffer.
- We construct a two-machine line $L(i)$
- (ie, we find machines $M_{u}(i)$ and $M_{d}(i)$ with parameters $r_{u}(i), p_{u}(i)$, $r_{d}(i), p_{d}(i)$, and $\left.N(i)=N_{i}\right)$
such that an observer in its buffer will see almost the same processes.
- The parameters are chosen as functions of the behaviors of the other two-machine lines.

Decomposition - Concept

Decomposition - Concept

There are $4(k-1)$ unknowns for the deterministic processing time line:

$$
\begin{gathered}
r_{u}(1), p_{u}(1), r_{d}(1), p_{d}(1), \\
r_{u}(2), p_{u}(2), r_{d}(2), p_{d}(2), \\
\cdots \\
r_{u}(k-1), p_{u}(k-1), r_{d}(k-1), p_{d}(k-1)
\end{gathered}
$$

Therefore, we need

- $4(k-1)$ equations, and
- an algorithm for solving those equations.

Decomposition Equations

Overview

The decomposition equations relate $r_{u}(i), p_{u}(i), r_{d}(i)$, and $p_{d}(i)$ to behavior in the real line and in other two-machine lines.

- Conservation of flow, equating all production rates.
- Flow rate/idle time, relating production rate to probabilities of starvation and blockage.
- Resumption of flow, relating $r_{u}(i)$ to upstream events and $r_{d}(i)$ to downstream events.
- Boundary conditions, for parameters of $M_{u}(1)$ and $M_{d}(k-1)$.

Decomposition Equations

Overview

- All the quantities in all these equations are
- specified parameters, or
- unknowns, or
- functions of parameters or unknowns derived from the two-machine line analysis.
- This is a set of $4(k-1)$ equations.

Decomposition Equations

Overview

Notation convention:

- Items that pertain to two-machine line $L(i)$ will have i in parentheses. Example: $r_{u}(i)$.
- Items that pertain to the real line L will have i in the subscript. Example: r_{i}.

Decomposition Equations
 Conservation of Flow

$$
E(i)=E(1), i=2, \ldots, k-1 .
$$

- Recall that $E(i)$ is a function of the unknowns $r_{u}(i), p_{u}(i), r_{d}(i)$, and $p_{d}(i)$.
- (It is also a function of $N(i)$, but $N(i)$ is known.)
- We know how to evaluate it easily, but we don't have a simple expression for it.

This is a set of $k-2$ equations.

Decomposition Equations

Flow Rate-Idle Time

$$
E_{i}=e_{i} \operatorname{prob}\left[n_{i-1}>0 \text { and } n_{i}<N_{i}\right]
$$

where

$$
e_{i}=\frac{r_{i}}{r_{i}+p_{i}}
$$

Problem:

- This expression involves a joint probability of two buffers taking certain values at the same time.
- But we only know how to evaluate two-machine, one-buffer lines, so we only know how to calculate the probability of one buffer taking on a certain value at a time.

Decomposition Equations

Flow Rate-Idle Time

Observation:

$$
\operatorname{prob}\left(n_{i-1}=0 \text { and } n_{i}=N_{i}\right) \approx 0
$$

Reason:

The only way to have $n_{i-1}=0$ and $n_{i}=N_{i}$ is if

- M_{i-1} is down or starved for a long time
- and M_{i} is up
- and M_{i+1} is down or blocked for a long time
- and to have exactly N_{i} parts in the two buffers.

Decomposition Equations

Flow Rate-Idle Time

Then

$$
\begin{aligned}
& \operatorname{prob} \quad {\left[n_{i-1}>0 \text { and } n_{i}<N_{i}\right] } \\
&=\operatorname{prob}\left[\text { NOT }\left\{n_{i-1}=0 \text { or } n_{i}=N_{i}\right\}\right] \\
&= 1-\operatorname{prob}\left[n_{i-1}=0 \text { or } n_{i}=N_{i}\right] \\
&= 1-\left\{\operatorname{prob}\left(n_{i-1}=0\right)+\operatorname{prob}\left(n_{i}=N_{i}\right)\right. \\
&\left.\quad-\operatorname{prob}\left(n_{i-1}=0 \text { and } n_{i}=N_{i}\right)\right\} \\
& \approx 1-\left\{\operatorname{prob}\left(n_{i-1}=0\right)+\operatorname{prob}\left(n_{i}=N_{i}\right)\right\}
\end{aligned}
$$

Decomposition Equations

Flow Rate-Idle Time

Therefore

$$
E_{i} \approx e_{i}\left[1-\operatorname{prob}\left(n_{i-1}=0\right)-\operatorname{prob}\left(n_{i}=N_{i}\right)\right]
$$

Note that

$$
\operatorname{prob}\left(n_{i-1}=0\right)=p_{s}(i-1) ; \quad \operatorname{prob}\left(n_{i}=N_{i}\right)=p_{b}(i)
$$

Two of the FRIT relationships in lines $L(i-1)$ and $L(i)$ are

$$
E(i)=e_{u}(i)\left[1-p_{b}(i)\right] ; \quad E(i-1)=e_{d}(i-1)\left[1-p_{s}(i-1)\right]
$$

Decomposition Equations

Flow Rate-Idle Time
or,

$$
p_{s}(i-1)=1-\frac{E(i-1)}{e_{d}(i-1)} ; \quad p_{b}(i)=1-\frac{E(i)}{e_{u}(i)}
$$

so (replacing \approx with $=$),

$$
E_{i}=e_{i}\left[1-\left\{1-\frac{E(i-1)}{e_{d}(i-1)}\right\}-\left\{1-\frac{E(i)}{e_{u}(i)}\right\}\right]
$$

The goal is to have $E=E_{i}=E(i-1)=E(i)$, so

$$
E(i)=e_{i}\left[1-\left\{1-\frac{E(i)}{e_{d}(i-1)}\right\}-\left\{1-\frac{E(i)}{e_{u}(i)}\right\}\right]
$$

Decomposition Equations

Flow Rate-Idle Time

Since

$$
e_{d}(i-1)=\frac{r_{d}(i-1)}{p_{d}(i-1)+r_{d}(i-1)} ; \quad e_{u}(i)=\frac{r_{u}(i)}{p_{u}(i)+r_{u}(i)},
$$

we can write

$$
\frac{p_{d}(i-1)}{r_{d}(i-1)}+\frac{p_{u}(i)}{r_{u}(i)}=\frac{1}{E(i)}+\frac{1}{e_{i}}-2, i=2, \ldots, k-1
$$

This is a set of $k-2$ equations.

Decomposition Equations Resumption of Flow

When the observer sees $M_{u}(i)$ down, M_{i} may actually be down...

Decomposition Equations Resumption of Flow

\ldots or, M_{i-1} may be down and B_{i-1} may be empty, \ldots

Decomposition Equations Resumption of Flow

\ldots or M_{i-2} may be down and B_{i-1} and B_{i-2} may be empty, \ldots

Decomposition Equations Resumption of Flow

\ldots or M_{i-3} may be down and B_{i-1} and B_{i-2} and B_{i-3} may be empty, \ldots

Decomposition Equations Resumption of Flow

etc.

Decomposition Equations Resumption of Flow

Similarly for the observer in B_{i-1}.

Decomposition Equations Resumption of Flow

Comparison

Decomposition Equations Resumption of Flow

Decomposition Equations Resumption of Flow

Decomposition Equations Resumption of Flow

Decomposition Equations Resumption of Flow

That is, when the Line $L(i)$ observer sees a failure in $M_{u}(i)$,

- either real machine M_{i} is down,

- or Buffer B_{i-1} is empty and the Line $L(i-1)$ observer sees a failure in $M_{u}(i-1)$.

Note that these two events are mutually exclusive. Why?

Decomposition Equations Resumption of Flow

Also, for the Line $L(j)$ observer to see $M_{u}(j)$ up, M_{j} must be up and B_{j-1} must be non-empty. Therefore,

$$
\begin{aligned}
& \left\{\alpha_{u}(j, \tau)=1\right\} \Longleftrightarrow\left\{\alpha_{j}(\tau)=1\right\} \text { and }\left\{n_{j-1}(\tau-1)>0\right\} \\
& \left\{\alpha_{u}(j, \tau)=0\right\} \Longleftrightarrow\left\{\alpha_{j}(\tau)=0\right\} \text { or }\left\{n_{j-1}(\tau-1)=0\right\}
\end{aligned}
$$

Decomposition Equations
 Resumption of Flow

Then

$$
\begin{aligned}
& r_{u}(i)=\operatorname{prob}\left[\alpha_{u}(i, t+1)=1 \mid \alpha_{u}(i, t)=0\right] \\
& =\operatorname{prob}\left[\left\{\alpha_{i}(t+1)=1\right\} \text { and }\left\{n_{i-1}(t)>0\right\} \mid\right. \\
& \left.\left\{\alpha_{i}(t)=0\right\} \text { or }\left\{n_{i-1}(t-1)=0\right\}\right]
\end{aligned}
$$

Decomposition Equations Resumption of Flow

To express $r_{u}(i)$ in terms of quantities we know or can find, we have to simplify prob $(U \mid V$ or $W)$, where

$$
\begin{aligned}
& U=\left\{\alpha_{i}(t+1)=1\right\} \text { and }\left\{n_{i-1}(t)>0\right\} \\
& V=\left\{\alpha_{i}(t)=0\right\} \\
& W=\left\{n_{i-1}(t-1)=0\right\}
\end{aligned}
$$

Important: V and W are disjoint.

$$
\operatorname{prob}(V \text { and } W)=0 .
$$

Decomposition Equations Resumption of Flow

$$
\begin{gathered}
\operatorname{prob}(U \mid V \text { or } W)=\frac{\operatorname{prob}(U \text { and }(V \text { or } W))}{\operatorname{prob}(V \text { or } W)} \\
=\frac{\operatorname{prob}((U \text { and } V) \text { or }(U \text { and } W))}{\operatorname{prob}(V \text { or } W)} \\
=\frac{\operatorname{prob}(U \text { and } V)}{\operatorname{prob}(V \text { or } W)}+\frac{\operatorname{prob}(U \text { and } W)}{\operatorname{prob}(V \text { or } W)} \\
=\frac{\operatorname{prob}(U \mid V) \operatorname{prob}(V)}{\operatorname{prob}(V \text { or } W)}+\frac{\operatorname{prob}(U \mid W) \operatorname{prob}(W)}{\operatorname{prob}(V \text { or } W)}
\end{gathered}
$$

Decomposition Equations Resumption of Flow

$$
=\operatorname{prob}(U \mid V) \frac{\operatorname{prob}(V)}{\operatorname{prob}(V \text { or } W)}+\operatorname{prob}(U \mid W) \frac{\operatorname{prob}(W)}{\operatorname{prob}(V \text { or } W)}
$$

Note that

$$
\operatorname{prob}(V \mid V \text { or } W)=\frac{\operatorname{prob}(V \text { and }(V \text { or } W))}{\operatorname{prob}(V \text { or } W)}=\frac{\operatorname{prob}(V)}{\operatorname{prob}(V \text { or } W)}
$$

so

$$
\begin{aligned}
\operatorname{prob}(U \mid V \text { or } W)= & \operatorname{prob}(U \mid V) \operatorname{prob}(V \mid V \text { or } W) \\
& +\operatorname{prob}(U \mid W) \operatorname{prob}(W \mid V \text { or } W) .
\end{aligned}
$$

Decomposition Equations Resumption of Flow

Then, if we plug U, V, and W from Slide 33 into this, we get

$$
r_{u}(i)=A(i-1) X(i)+B(i) X^{\prime}(i), i=2, \ldots, k-1
$$

where

$$
\begin{aligned}
& A(i-1)=\operatorname{prob}(U \mid W) \\
& =\operatorname{prob}\left[n_{i-1}(t)>0 \text { and } \alpha_{i}(t+1)=1 \mid\right. \\
& \left.\quad n_{i-1}(t-1)=0\right]
\end{aligned}
$$

Decomposition Equations
 Resumption of Flow

$$
\begin{aligned}
X(i)= & \operatorname{prob}(W \mid V \text { or } W) \\
& =\operatorname{prob}\left[n_{i-1}(t-1)=0 \mid n_{i-1}(t-1)=0 \text { or } \alpha_{i}(t)=0\right], \\
B(i) & =\operatorname{prob}(U \mid V) \\
& =\operatorname{prob}\left[n_{i-1}(t)>0 \text { and } \alpha_{i}(t+1)=1 \mid \alpha_{i}(t)=0\right], \\
X^{\prime}(i) & =\operatorname{prob}(V \mid V \text { or } W) \\
& =\operatorname{prob}\left[\alpha_{i}(t)=0 \mid\left\{n_{i-1}(t-1)=0 \text { or } \alpha_{i}(t)=0\right\}\right] .
\end{aligned}
$$

Decomposition Equations Resumption of Flow

To evaluate

$$
A(i-1)=\operatorname{prob}\left[n_{i-1}(t)>0 \text { and } \alpha_{i}(t+1)=1 \mid n_{i-1}(t-1)=0\right]:
$$

Note that

- For Buffer $i-1$ to be empty at time $t-1$, Machine M_{i} must be up at time $t-1$ and also at time t. It must have been up in order to empty the buffer, and it must stay up because it cannot fail. Therefore $\alpha_{i}(t)=1$.
- For Buffer $i-1$ to be non-empty at time t after being empty at time $t-1$, it must have gained 1 part. For it to gain a part when $\alpha_{i}(t)=1, M_{i}$ must not have been working (because it was previously starved). Therefore, M_{i} could not have failed and $A(i-1)$ can therefore be written

$$
A(i-1)=\operatorname{prob}\left[n_{i-1}(t)>0 \mid n_{i-1}(t-1)=0\right]
$$

Decomposition Equations Resumption of Flow

$$
A(i-1)=\operatorname{prob}\left[n_{i-1}(t)>0 \mid n_{i-1}(t-1)=0\right]
$$

- For Buffer $i-1$ to be empty, M_{i-1} must be down or starved. For M_{i-1} to be starved, M_{i-2} must be down or starved, etc. Therefore, saying M_{i-1} is down or starved is equivalent to saying $M_{u}(i-1)$ is down. That is, if $n_{i-1}(t-1)=0$ then $\alpha_{u}(i-1, t-1)=0$.
- Conversely, for Buffer $i-1$ to be non-empty, M_{i-1} must not be down or starved. That is, if $n_{i-1}(t)>0$, then $\alpha_{u}(i-1, t)=1$.
Therefore,

$$
A(i-1)=\operatorname{prob}\left[\alpha_{u}(i-1, t)=1 \mid \alpha_{u}(i-1, t-1)=0\right]=r_{u}(i-1)
$$

Decomposition Equations
 Resumption of Flow

Similarly,

$$
B(i)=\operatorname{prob}\left[n_{i-1}(t)>0 \text { and } \alpha_{i}(t+1)=1 \mid \alpha_{i}(t)=0\right]
$$

Note that if $\alpha_{i}(t)=0$, we must have $n_{i-1}(t)>0$. Therefore

$$
B(i)=\operatorname{prob}\left[\alpha_{i}(t+1)=1 \mid \alpha_{i}(t)=0\right]
$$

or,

$$
B(i)=r_{i}
$$

so

$$
r_{u}(i)=r_{u}(i-1) X(i)+r_{i} X^{\prime}(i)
$$

Decomposition Equations Resumption of Flow

Interpretation so far:

- $r_{u}(i)$, the probability that $M_{u}(i)$ goes from down to up, is
- r_{i} times the probability that $M_{u}(i)$ is down because M_{i} is down
- plus $r_{u}(i-1)$ times the probability that $M_{u}(i)$ is down because $M_{u}(i-1)$ is down and B_{i-1} is empty.

Decomposition Equations Resumption of Flow

$X(i)=$ the probability that $M_{u}(i)$ is down because $M_{u}(i-1)$ is down and B_{i-1} is empty;
$X^{\prime}(i)=$ the probability that $M_{u}(i)$ is down because M_{i} is down.
Since these are the only two ways that $M_{u}(i)$ can be down,

$$
X^{\prime}(i)=1-X(i)
$$

Decomposition Equations Resumption of Flow

$$
\begin{gathered}
X(i)=\operatorname{prob}\left[n_{i-1}(t-1)=0 \mid n_{i-1}(t-1)=0 \text { or } \alpha_{i}(t)=0\right] \\
=\frac{\operatorname{prob}\left[n_{i-1}(t-1)=0 \text { and }\left\{n_{i-1}(t-1)=0 \text { or } \alpha_{i}(t)=0\right\}\right]}{\operatorname{prob}\left[n_{i-1}(t-1)=0 \text { or } \alpha_{i}(t)=0\right]} \\
=\frac{\operatorname{prob}\left[n_{i-1}(t-1)=0\right]}{\operatorname{prob}\left[n_{i-1}(t-1)=0 \text { or } \alpha_{i}(t)=0\right]} \\
=\frac{p_{s}(i-1)}{\operatorname{prob}\left[n_{i-1}(t-1)=0 \text { or } \alpha_{i}(t)=0\right]}
\end{gathered}
$$

Decomposition Equations Resumption of Flow

To analyze the denominator, note

- $\left\{n_{i-1}(t-1)=0\right.$ or $\left.\alpha_{i}(t)=0\right\}=\left\{\alpha_{u}(i)=0\right\}$ by definition;
$-\operatorname{prob}\left[n_{i-1}(t-1)=0\right.$ or $\left.\alpha_{i}(t)=0\right] \approx$ prob $\left[\left\{n_{i-1}(t-1)=0\right.\right.$ or $\left.\alpha_{i}(t)=0\right\}$ and $\left.n_{i}(t-1)<N_{i}\right]$ because $\operatorname{prob}\left[n_{i-1}(t-1)=0\right.$ and $\left.n_{i}(t-1)=N_{i}\right] \approx 0$
so the denominator is, approximately,

$$
\operatorname{prob}\left[\alpha_{u}(i)=0 \text { and } n_{i}(t-1)<N_{i}\right]
$$

Recall that this is equal to

$$
\frac{p_{u}(i)}{r_{u}(i)} \operatorname{prob}\left[\alpha_{u}(i)=1 \text { and } n_{i}(t-1)<N_{i}\right]=\frac{p_{u}(i)}{r_{u}(i)} E(i)
$$

Decomposition Equations Resumption of Flow

Therefore,

$$
X(i)=\frac{p_{s}(i-1) r_{u}(i)}{p_{u}(i) E(i)}
$$

and

$$
r_{u}(i)=r_{u}(i-1) X(i)+r_{i}(1-X(i)), i=2, \ldots, k-1
$$

This is a set of $k-2$ equations.

Decomposition Equations Resumption of Flow

By the same logic,

$$
r_{d}(i-1)=r_{d}(i) Y(i)+r_{i}(1-Y(i)), i=2, \ldots, k-1
$$

where

$$
Y(i)=\frac{p_{b}(i) r_{d}(i-1)}{p_{d}(i-1) E(i-1)} .
$$

This is a set of $k-2$ equations.

We now have $4(k-2)=4 k-8$ equations.

Decomposition Equations

Boundary Conditions

$M_{d}(1)$ is the same as M_{1} and $M_{d}(k-1)$ is the same as M_{k}. Therefore

$$
\begin{aligned}
& r_{u}(1)=r_{1} \\
& p_{u}(1)=p_{1} \\
& r_{d}(k-1)=r_{k} \\
& p_{d}(k-1)=p_{k}
\end{aligned}
$$

This is a set of 4 equations.
We now have $4(k-1)$ equations in $4(k-1)$ unknowns $r_{u}(i), p_{u}(i), r_{d}(i), p_{d}(i)$, $i=1, \ldots, k-1$.

Decomposition Equations
 Algorithm

FRIT:

$$
\frac{p_{d}(i-1)}{r_{d}(i-1)}+\frac{p_{u}(i)}{r_{u}(i)}=\frac{1}{E(i)}+\frac{1}{e_{i}}-2
$$

Upstream equations:

$$
\begin{aligned}
& r_{u}(i)=r_{u}(i-1) X(i)+r_{i}(1-X(i)) ; \quad X(i)=\frac{p_{s}(i-1) r_{u}(i)}{p_{u}(i) E(i)} \\
& p_{u}(i)=r_{u}(i)\left(\frac{1}{E(i)}+\frac{1}{e_{i}}-2-\frac{p_{d}(i-1)}{r_{d}(i-1)}\right)
\end{aligned}
$$

Downstream equations:

$$
\begin{aligned}
& r_{d}(i)=r_{d}(i+1) Y(i+1)+r_{i+1}(1-Y(i+1)) ; Y(i+1)=\frac{p_{b}(i+1) r_{d}(i)}{p_{d}(i) E(i)} \\
& p_{d}(i)=r_{d}(i)\left(\frac{1}{E(i+1)}+\frac{1}{e_{i+1}}-2-\frac{p_{u}(i+1)}{r_{u}(i+1)}\right)
\end{aligned}
$$

Decomposition Equations Algorithm

We use the conservation of flow conditions by modifying these equations.
Modified upstream equations:

$$
\begin{aligned}
& r_{u}(i)=r_{u}(i-1) X(i)+r_{i}(1-X(i)) ; \quad X(i)=\frac{p_{s}(i-1) r_{u}(i)}{p_{u}(i) E(i-1)} \\
& p_{u}(i)=r_{u}(i)\left(\frac{1}{E(i-1)}+\frac{1}{e_{i}}-2-\frac{p_{d}(i-1)}{r_{d}(i-1)}\right)
\end{aligned}
$$

Modified downstream equations:

$$
\begin{aligned}
& r_{d}(i)=r_{d}(i+1) Y(i+1)+r_{i+1}(1-Y(i+1)) ; Y(i+1)=\frac{p_{b}(i+1) r_{d}(i)}{p_{d}(i) E(i+1)} \\
& p_{d}(i)=r_{d}(i)\left(\frac{1}{E(i+1)}+\frac{1}{e_{i+1}}-2-\frac{p_{u}(i+1)}{r_{u}(i+1)}\right)
\end{aligned}
$$

Decomposition Equations Algorithm

Possible Termination Conditions:

- $|E(i)-E(1)|<\epsilon$ for $i=2, \ldots, k-1$, or
- The change in each $r_{u}(i), p_{u}(i), r_{d}(i), p_{d}(i)$ parameter, $i=1, \ldots, k-1$ is less than ϵ, or
- etc.

Decomposition Equations Algorithm

DDX algorithm : due to Dallery, David, and Xie (1988).

1. Guess the downstream parameters of $L(1)\left(r_{d}(1), p_{d}(1)\right)$. Set $i=2$.
2. Use the modified upstream equations to obtain the upstream parameters of $L(i)\left(r_{u}(i), p_{u}(i)\right)$. Increment i.
3. Continue in this way until $L(k-1)$. Set $i=k-2$.
4. Use the modified downstream equations to obtain the downstream parameters of $L(i)$. Decrement i.
5. Continue in this way until $L(1)$.
6. Go to Step 2 or terminate.

Decomposition Approximations

Is the decomposition exact? NO, because

1. The behavior of the flow in the buffer of a two-machine line is not exactly the same as the behavior of the flow in a buffer of a long line.
2. $\operatorname{prob}\left[n_{i-1}(t-1)=0\right.$ and $\left.n_{i}(t-1)=N_{i}\right] \approx 0$

Question: When will this work well, and when will it work badly?

Examples
 Three-machine line

Three-machine line - production rate.

Examples
 Three-machine line

Three-machine line - total average inventory

Examples Long lines

50 Machines; $\mathrm{r}=0.1 ; \mathrm{p}=0.01 ; \mathrm{mu}=1.0 ; \mathrm{N}=20.0$

Distribution of material in a line with identical machines and buffers.

Explain the shape.

Examples Long lines

Analytical vs simulation

Time steps	Decomp	10,000	50,000	200,000
Production rate	0.786	0.740	0.751	0.750

(Not the same line as in Slide 55.)

Examples Long lines

Same as Slide 55 except that Buffer 25 is now huge.

Explain the shape.

Examples Long lines

25 Machines; $r=0.1 ; p=0.01 ; m u=1.0 ; \mathrm{N}=20.0$

Upstream half of Slide 57.

Explain the shape.

Examples Long lines

50 Machines; upstream $r=0.1 ; p=0.01$; $m u=1.0 ; \mathrm{N}=20.0 ; \mathrm{N}(25)=2000.0$ downstream $\mathrm{r}=0.15 ; \mathrm{p}=0.01$; $\mathrm{mu}=1.0, \mathrm{~N}=50.0$

Upstream same as Slide 58; downstream faster.

Explain the shape.

Examples Long lines

50 Machines; upstream $r=0.1 ; p=0.01$; $m u=1.0 ; \mathrm{N}=20.0 ; \mathrm{N}(25)=2000.0$ downstream $\mathrm{r}=0.09 ; \mathrm{p}=0.01$; $\mathrm{mu}=1.0, \mathrm{~N}=50.0$

Upstream same as Slide 58; downstream faster.

Explain the shape.

Examples Long lines

50 Machines; upstream $r=0.1 ; p=0.01 ; m u=1.0 ; \mathrm{N}=20.0 ; \mathrm{N}(25)=2000.0$ downstream $\mathrm{r}=0.09 ; \mathrm{p}=0.01 ; \mathrm{mu}=1.0, \mathrm{~N}=15.0$

Downstream same as downstream half of Slide 57; upstream faster.

Explain the shape.

Examples Long lines

> Same as upstream half of Slide 61 except for Machine 26.

Explain the shape.
How was Machine 26 chosen?

Examples
 Long lines - Bottlenecks

> Operation time bottleneck. Identical machines and buffers, except for M_{10}.

Explain the shape.

Examples
 Long lines - Bottlenecks

50 Machines; $r=0.1 ; p=0.01 ; m u=1.0 ; \mathrm{N}=20.0$ EXCEPT $p(10)=0.0375$

Failure time bottleneck.

Explain the shape.

Examples
 Long lines - Bottlenecks

50 Machines; $\mathrm{r}=0.1 ; \mathrm{p}=0.01 ; \mathrm{mu}=1.0 ; \mathrm{N}=20.0$ EXCEPT $\mathrm{r}(10)=0.02667$

Repair time bottleneck.

Explain the shape.

Examples
 Infinitely long lines

Infinitely long lines with identical machines and buffers

$$
\left.\begin{array}{l}
r_{i}=r \\
p_{i}=p \\
N_{i}=N
\end{array}\right\} \text { for each } i,-\infty<i<\infty
$$

The observer in each buffer sees exactly the same behavior. Consequently, the decomposed pseudo-machines are all identical and symmetric. For each i,

$$
\begin{aligned}
& r_{u}(i)=r_{u}(i-1)=r_{d}(i)=r_{d}(i-1) \\
& p_{u}(i)=p_{u}(i-1)=p_{d}(i)=p_{d}(i-1) .
\end{aligned}
$$

Examples

Infinitely long lines

Resumption of flow says

$$
\begin{aligned}
& r_{u}(i)=r_{u}(i-1) X(i)+r_{i}(1-X(i)) \\
& r_{u}=r_{u} X+r(1-X)
\end{aligned}
$$

so $r_{u}(i)=r_{d}(i)=r$.
FRIT says

$$
\begin{aligned}
& \frac{p_{d}(i-1)}{r_{d}(i-1)}+\frac{p_{u}(i)}{r_{u}(i)}=\frac{1}{E(i)}+\frac{1}{e_{i}}-2 \\
& \frac{2 p_{u}}{r}=\frac{1}{E}+\frac{1}{e}-2
\end{aligned}
$$

Examples
 Infinitely long lines

In the last equation, p_{u} is unknown and E is a function of p_{u}. This is one equation in one unknown.

Examples
 Effect of one buffer size on all buffer levels

Examples
 Effect of one buffer size on all buffer levels

- Which \bar{n}_{i} are decreasing and which are increasing?
- Why?

$$
-M_{1}-B_{1}-M_{2}-B_{2}-M_{3}-B_{3}-M_{4}-B_{4}-M_{5}-B_{6}-M_{6}-B_{6}-M_{7}-M_{8}
$$

Examples
 Buffer allocation

Which has a higher production rate?

- 9-Machine line with two buffering options:
- 8 buffers equally sized; and

- 2 buffers equally sized.

Examples
 Buffer allocation

- Continuous model; all machines have $r=.019, p=.001$, $\mu=1$.
- What are the asymptotes?
- Is 8 buffers always faster?

Total Buffer Space

Examples
 Buffer allocation

- Is 8 buffers always faster?
- Perhaps not, but difference is not significant in systems with very small buffers.

Total Buffer Space

Long Lines - More Models Discrete Material Exponential Processing Time and Continuous Material Models

- New issue: machines may operate at different speeds.
- Blockage and starvation may be caused by differences in machine speeds, not only failures.
- Decomposition of these classes of systems is similar to that of discrete-material, deterministic-processing time lines except
- The two-machine lines have machines with 3 parameters $\left(r_{u}(i), p_{u}(i)\right.$, $\left.\mu_{u}(i) ; r_{d}(i), p_{d}(i), \mu_{d}(i)\right)$. More equations - $6(k-1)$ - are therefore needed.
- Exponential decomposition is described in the book in detail; continuous material decomposition was not developed until after book was written.

Long Lines - Exponential Processing Time Model

The observer thinks he is in a two-machine exponential processing time line with parameters
$r_{u}(i) \delta t=$ probability that $M_{u}(i)$ goes from down to up in $(t, t+\delta t)$, for small δt;
$p_{u}(i) \delta t=\quad$ probability that $M_{u}(i)$ goes from up to down in $(t, t+\delta t)$ if it is not blocked, for small δt;
$\mu_{u}(i) \delta t=\quad$ probability that a piece flows into B_{i} in $(t, t+\delta t)$ when $M_{u}(i)$ is up and not blocked, for small δt;
$r_{d}(i) \delta t=$ probability that $M_{d}(i)$ goes from down to up in $(t, t+\delta t)$, for small δt;
$p_{d}(i) \delta t=$ probability that $M_{d}(i)$ goes from up to down in $(t, t+\delta t)$ if it is not starved, for small δt;
$\mu_{d}(i) \delta t=$ probability that a piece flows out of B_{i} in $(t, t+\delta t)$ when $M_{d}(i)$ is up and not starved, for small δt.

Long Lines - Exponential Processing Time Model

 EquationsWe have $6(k-1)$ unknowns, so we need $6(k-1)$ equations. They are

- Interruption of flow, relating $p_{u}(i)$ to upstream events and $p_{d}(i)$ to downstream events,
- Resumption of flow,
- Conservation of flow,
- Flow rate/idle time,
- Boundary conditions.

All of these, except for the Interruption of Flow equations, are similar to those of the deterministic processing time case.

Long Lines - Exponential Processing Time Model Interruption of Flow

The first two sets of equations describe the interruptions of flow caused by machine failures. By definition,

$$
p_{u}(i) \delta t=\operatorname{prob}\left[\alpha_{u}(i ; t+\delta t)=0 \mid \alpha_{u}(i ; t)=1 \text { and } n_{i}(t)<N_{i}\right],
$$

or,

$$
p_{u}(i) \delta t=\operatorname{prob}\left[M_{u}(i) \text { down at } t+\delta t \mid M_{u}(i) \text { up and } n_{i}<N_{i} \text { at } t\right] .
$$

Long Lines - Exponential Processing Time Model Interruption of Flow

We define the events that a pseudo-machine is up or down as follows:
$M_{u}(i)$ is down if

1. M_{i} is down, or
2. $n_{i-1}=0$ and $M_{u}(i-1)$ is down.
$M_{u}(i)$ is up for all other states of the transfer line upstream of Buffer B_{i}. Therefore, $M_{u}(i)$ is up if
3. M_{i} is operational and $n_{i-1}>0$, or
4. M_{i} is operational, $n_{i-1}=0$ and $M_{u}(i-1)$ is up.

Long Lines - Exponential Processing Time Model Interruption of Flow

After a lot of equation manipulation, we get:

$$
p_{u}(i)=p_{i}+\frac{r_{u}(i-1) \mathbf{p}(i-1 ; 001)}{E_{u}(i)} .
$$

and similarly,

$$
p_{d}(i)=p_{i+1}+\frac{r_{d}(i+1) \mathbf{p}(i+1 ; N 10)}{E_{d}(i)} .
$$

in which $\mathbf{p}(i-1 ; 001)$ is the steady state probability that line $L(i-1)$ is in state $(0,0,1)$ and $\mathbf{p}(i+1 ; N 10)$ is the steady state probability that line $L(i+1)$ is in state $\left(N_{i+1}, 1,0\right)$.

Long Lines - Exponential Processing Time Model Resumption of Flow

$$
\begin{aligned}
r_{u}(i)= & r_{u}(i-1) \frac{\mathbf{p}_{i-1}(0,0,1) r_{u}(i) \mu_{u}(i)}{p_{u}(i) P(i)} \\
& +r_{i}\left(1-\frac{\mathbf{p}_{i-1}(0,0,1) r_{u}(i) \mu_{u}(i)}{p_{u}(i) P(i)}\right) \\
& i=2, \cdots, k-1 \\
r_{d}(i)= & r_{d}(i+1) \frac{\mathbf{p}_{i+1}\left(N_{i+1}, 1,0\right) r_{d}(i) \mu_{d}(i)}{p_{d}(i) P(i)} \\
& +r_{i+1}\left(1-\frac{\mathbf{p}_{i+1}\left(N_{i+1}, 1,0\right) r_{d}(i) \mu_{d}(i)}{p_{d}(i) P(i)}\right) \\
& i=1, \cdots, k-2
\end{aligned}
$$

Long Lines - Exponential Processing Time Model

 Conservation of Flow$$
P(i)=P(1), i=2, \ldots, k-1
$$

Long Lines - Exponential Processing Time Model Flow Rate/Idle Time

The flow rate-idle time relationship is, approximately,

$$
P_{i}=e_{i} \mu_{i}\left(1-\operatorname{prob}\left[n_{i-1}=0\right]-\operatorname{prob}\left[n_{i}=N_{i}\right]\right) .
$$

which can be transformed into

$$
\frac{1}{e_{i} \mu_{i}}+\frac{1}{P}=\frac{1}{e_{d}(i-1) \mu_{d}(i-1)}+\frac{1}{e_{u}(i) \mu_{u}(i)} ; \quad i=2, \ldots, k-1 .
$$

Long Lines - Exponential Processing Time Model

 Flow Rate/Idle TimeFor the algorithm, we express it as

$$
\begin{array}{r}
\mu_{u}(i)=\frac{1}{e_{u}(i)}\left\{\frac{1}{\frac{1}{P(i)}+\frac{1}{e_{i} \mu_{i}}-\frac{1}{e_{d}(i-1) \mu_{d}(i-1)}}\right\}, \\
i=2, \cdots, k-1, \\
\mu_{d}(i)=\frac{1}{e_{d}(i)}\left\{\frac{1}{\frac{1}{P(i)}+\frac{1}{e_{i+1} \mu_{i+1}}-\frac{1}{e_{u}(i+1) \mu_{u}(i+1)}}\right\}, \\
\quad i=1, \cdots, k-2 .
\end{array}
$$

Long Lines - Exponential Processing Time Model Boundary Conditions

$M_{d}(1)$ is the same as M_{1} and $M_{d}(k-1)$ is the same as M_{k}. Therefore

$$
\begin{aligned}
& r_{u}(1)=r_{1} \\
& p_{u}(1)=p_{1} \\
& \mu_{u}(1)=\mu_{1} \\
& r_{d}(k-1)=r_{k} \\
& p_{d}(k-1)=p_{k} \\
& \mu_{d}(k-1)=\mu_{k}
\end{aligned}
$$

Long Lines - Exponential Processing Time Example

- Exponential processing time line - 3 machines
- Upper bound determined by smallest ρ_{i}.
- Simulation satisfies upper bound; decomposition does not. Why?

Long Lines - Continuous Material

Conceptually very similar to exponential processing time model. One difference:

- $\operatorname{prob}\left(x_{i-1}=0\right.$ and $\left.x_{i}=N_{i}\right)=0$ exactly.

Long Lines - Continuous Material Model New approximation

- New approximation: The observer sees both pseudo-machines operating at multiple rates, but the two-machine lines assume single rates.

$$
\begin{gathered}
M_{u}(i) \rightarrow \square \rightarrow(\underline{q}) \rightarrow M_{d}(i) \\
r_{u}(i), p_{u}(i), \mu_{u}(i) \\
r_{d}(i), p_{d}(i), \mu_{d}(i)
\end{gathered}
$$

If this were really a two-machine continuous material line,

- material would enter the buffer at rate $\mu_{u}(i)$ (if $M_{u}(i)$ is up and the buffer is not full) or $\mu_{d}(i)$ (if $M_{u}(i)$ and $M_{d}(i)$ are up and the buffer is full and $\left.\mu_{d}(i)<\mu_{u}(i)\right)$ or 0 ;
- material would exit the buffer at rate $\mu_{d}(i)$ (if $M_{d}(i)$ is up and the buffer is not empty) or $\mu_{u}(i)$ (if $M_{u}(i)$ and $M_{d}(i)$ are up and the buffer is empty and $\left.\mu_{u}(i)<\mu_{d}(i)\right)$ or 0 ;

Long Lines - Continuous Material New approximation

Assume that $\ldots<\mu_{i-2}<\mu_{i-1}<\mu_{i}<\mu_{i+1}<\ldots$. Assume all the machines are up and B_{i} is not full. Then the observer in B_{i} actually sees material entering $B_{i} \ldots$

- at rate μ_{i} if B_{i-1} is not empty;
- at rate μ_{i-1} if B_{i-2} is not empty and B_{i-1} is empty;
- at rate μ_{i-2} if B_{i-3} is not empty and B_{i-2} is empty and B_{i-1} is empty;
- etc.

Therefore, this approximation may break down if the μ_{i} are very different.

Long Lines - Continuous Material

Equations

We have the same $6(k-1)$ unknowns, so we need $6(k-1)$ equations. They are, as before,

- Interruption of flow,
- Resumption of flow,
- Conservation of flow,
- Flow rate/idle time,
- Boundary conditions.

They are the same as in the exponential processing time case except for the Interruption of Flow equations.

Long Lines - Continuous Material Interruption of Flow

Considerable manipulation leads to

$$
\begin{aligned}
p_{u}(i)= & p_{i}\left(1+\frac{\mathbf{p}_{i-1}(0,1,1) \mu_{u}(i)}{P(i)-\mathbf{p}_{\mathbf{i}}\left(N_{i}, 1,1\right) \mu_{d}(i)}\left(\frac{\mu_{u}(i-1)}{\mu_{i}}-1\right)\right)+ \\
& \left(\frac{\mathbf{p}_{i-1}(0,0,1) \mu_{u}(i)}{P(i)-\mathbf{p}_{\mathbf{i}}\left(N_{i}, 1,1\right) \mu_{d}(i)}\right) r_{u}(i-1), i=2, \cdots, k-1
\end{aligned}
$$

and, similarly,

$$
\begin{aligned}
p_{d}(i)= & \left.p_{i+1}\left(1+\frac{\mathbf{p}_{i+1}\left(N_{i+1}, 1,1\right) \mu_{d}(i)}{P(i)-\mathbf{p}_{\mathbf{i}}(0,1,1) \mu_{u}(i)}\left(\frac{\mu_{d}(i+1)}{\mu_{i+1}}-1\right)\right)\right)+ \\
& \left(\frac{\mathbf{p}_{i+1}\left(N_{i+1}, 1,0\right) \mu_{d}(i+1)}{P(i)-\mathbf{p}_{\mathbf{i}}(0,1,1) \mu_{u}(i)}\right) r_{d}(i+1), i=1, \cdots, k-2
\end{aligned}
$$

To come

- Assembly/Disassembly Systems
- Buffer Optimization
- Effect of Buffers on Quality
- Loops
- Real-Time Control
- ????

MIT OpenCourseWare
http://ocw.mit.edu

2.852 Manufacturing Systems Analysis

Spring 2010

For information about citing these materials or our Terms of Use,visit:http://ocw.mit.edu/terms.

