MIT 2.852 Manufacturing Systems Analysis Lectures 19-21

Scheduling: Real-Time Control of Manufacturing Systems Stanley B. Gershwin

Spring, 2007

Copyright (C)2007 Stanley B. Gershwin.

Definitions

- Events may be controllable or not, and predictable or not.

	controllable	uncontrollable
predictable	loading a part	lunch
unpredictable	???	machine failure

Definitions

- Scheduling is the selection of times for future controllable events.
- Ideally, scheduling systems should deal with all controllable events, and not just production.
\star That is, they should select times for operations, set-up changes, preventive maintenance, etc.
* They should at least be aware of set-up changes, preventive maintenance, etc.when they select times for operations.

Definitions

- Because of recurring random events, scheduling is an on-going process, and not a one-time calculation.
- Scheduling, or shop floor control, is the bottom of the scheduling/planning hierarchy. It translates plans into events.

Issues in Factory Control

- Problems are dynamic ; current decisions influence future behavior and requirements.
- There are large numbers of parameters, time-varying quantities, and possible decisions.
- Some time-varying quantities are stochastic .
- Some relevant information (MTTR, MTTF, amount of inventory available, etc.) is not known.
- Some possible control policies are unstable .

Dynamic Programming

Example

Problem

Discrete Time, Discrete Stąte, Deterministic

Problem: find the least expensive path from A to Z .

Dynamic Programming

Example

Problem

Let $\boldsymbol{g}(\boldsymbol{i}, \boldsymbol{j})$ be the cost of traversing the link from \boldsymbol{i} to \boldsymbol{j}. Let $\boldsymbol{i}(\boldsymbol{t})$ be the t th node on a path from \boldsymbol{A} to \boldsymbol{Z}. Then the path cost is

$$
\sum_{t=1}^{T} g(i(t-1), i(t))
$$

where T is the number of nodes on the path, $\boldsymbol{i}(\mathbf{0})=A$, and $i(T)=Z$.
\boldsymbol{T} is not specified; it is part of the solution.

Dynamic Programming

Example

Solution

- A possible approach would be to enumerate all possible paths (possible solutions). However, there can be a lot of possible solutions.
- Dynamic programming reduces the number of possible solutions that must be considered.
* Good news: it often greatly reduces the number of possible solutions.
* Bad news: it often does not reduce it enough to give an exact optimal solution practically (ie, with limited time and memory). This is the curse of dimensionality .
* Good news: we can learn something by characterizing the optimal solution, and that sometimes helps in getting an analytical optimal solution or an approximation.
\star Good news: it tells us something about stochastic problems.

Dynamic Programming

Example

Solution

Instead of solving the problem only for A as the initial point, we solve it for all possible initial points.

For every node i, define $J(i)$ to be the optimal cost to go from Node i to Node Z (the cost of the optimal path from i to Z).

We can write

$$
J(i)=\sum_{t=1}^{T} g(i(t-1), i(t))
$$

where $i(0)=i ; i(T)=Z ;(i(t-1), i(t))$ is a link for every t.

Dynamic Programming

Example

Solution

Then $\boldsymbol{J}(\boldsymbol{i})$ satisfies

$$
J(Z)=0
$$

and, if the optimal path from i to Z traverses link (i, j),

Dynamic Proarammina

Example

Solution

Suppose that several links go out of Node i.

Suppose that for each node j for which a link exists from i to j, the optimal path and optimal cost $J(j)$ from j to Z is known.

Dynamic Programming

Example

Solution

Then the optimal path from i to Z is the one that minimizes the sum of the costs from i to j and from j to Z. That is,

$$
J(i)=\min _{j}[g(i, j)+J(j)]
$$

where the minimization is performed over all j such that a link from i to j exists. This is the Bellman equation.
This is a recursion or recursive equation because $\boldsymbol{J}()$ appears on both sides, although with different arguments.
$\boldsymbol{J}(\boldsymbol{i})$ can be calculated from this if $\boldsymbol{J}(\boldsymbol{j})$ is known for every node \boldsymbol{j} such that (i, j) is a link.

Dynamic Programming

Example

Solution

Bellman's Principle of Optimality: if i and j are nodes on an optimal path from A to Z, then the portion of that path from A to Z between i and j is an optimal path from \boldsymbol{i} to \boldsymbol{j}.

Dynamic Programming

Example

Solution

Example: Assume that we have determined that $J(O)=6$ and $J(J)=11$.
To calculate $J(\boldsymbol{K})$,

$$
\begin{aligned}
& J(K)= \min \left\{\begin{array}{l}
g(K, O)+J(O) \\
g(K, J)+J(J)
\end{array}\right\} \\
&=\min \left\{\begin{array}{l}
3+6 \\
9+11
\end{array}\right\}=9
\end{aligned}
$$

Dynamic Programming

Example

Solution

Algorithm

1. Set $J(Z)=0$.
2. Find some node i such that

- $J(i)$ has not yet been found, and
- for each node \boldsymbol{j} in which link $(\boldsymbol{i}, \boldsymbol{j})$ exists, $\boldsymbol{J}(\boldsymbol{j})$ is already calculated.

Assign $J(i)$ according to

$$
J(i)=\min _{j}[g(i, j)+J(j)]
$$

3. Repeat Step 2 until all nodes, including A, have costs calculated.

Dynamic Programming

Example

Solution

Dynamic Programming

Example

Solution

The important features of a dynamic programming problem are

- the state (i);
- the decision (to go to j after i);
- the objective function $\left(\sum_{t=1}^{T} g(i(t-1), i(t))\right)$
- the cost-to-go function ($J(i)$);
- the one-step recursion equation that determines $J(i)$ $\left(J(i)=\min _{j}[g(i, j)+J(j)]\right)$;
- that the solution is determined for every \boldsymbol{i}, not just A and not just nodes on the optimal path;
- that $\boldsymbol{J}(i)$ depends on the nodes to be visited after \boldsymbol{i}, not those between A and i. The only thing that matters is the present state and the future;
- that $J(i)$ is obtained by working backwards.

Dynamic Programming

Example

Solution

This problem was

- discrete time, discrete state, deterministic.

Other versions:

- discrete time, discrete state, stochastic
- continuous time, discrete state, deterministic
- continuous time, discrete state, stochastic
- continuous time, mixed state, deterministic
- continuous time, mixed state, stochastic
in stochastic systems, we optimize the expected cost.

Dynamic Programming

Discrete time, discrete state

Stochastic

Suppose

- $g(i, j)$ is a random variable; or
- if you are at i and you choose j, you actually go to k with probability $\mathrm{p}(i, j, k)$.
Then the cost of a sequence of choices is random. The objective function is

$$
E\left(\sum_{t=1}^{T} g(i(t-1), i(t))\right)
$$

and we can define

$$
J(i)=E \min _{j}[g(i, j)+J(j)]
$$

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Context: The planning/scheduling hierarchy

- Long term: factory design, capital expansion, etc.
- Medium term: demand planning, staffing, etc.
- Short term:
* response to short term events
\star part release and dispatch
In this problem, we deal with the response to short term events.
The factory and the demand are given to us; we must calculate short term production rates; these rates are the targets that release and dispatch must achieve.

Dynamic
 Continuous Time, Mixed State

Programming

Stochastic Example

- Perfectly flexible machine, two part types. $\boldsymbol{\tau}_{i}$ time units required to make Type i parts, $i=1,2$.
- Exponential failures and repairs with rates p and r.
- Constant demand rates d_{1}, d_{2}.
- Instantaneous production rates $u_{i}(t), i=1,2$ - control variables.
- Downstream surpluses $\boldsymbol{x}_{\boldsymbol{i}}(\boldsymbol{t})$.

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Cumulative

$|$| Production |
| :--- |
| and Demand |

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Feasibility:

- For the problem to be feasible, it must be possible to make approximately $d_{i} T$ Type i parts in a long time period of length $\boldsymbol{T}, \boldsymbol{i}=\mathbf{1}, \mathbf{2}$. (Why "approximately"?)
- The time required to make $d_{i} T$ parts is $\tau_{i} d_{i} T$.
- During this period, the total up time of the machine - ie, the time available for production - is approximately $r /(r+p) T$.
- Therefore, we must have $\tau_{1} d_{1} T+\tau_{2} d_{2} T \leq r /(r+p) T$, or

$$
\sum_{i=1}^{2} \tau_{i} d_{i} \leq \frac{r}{r+p}
$$

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

If this condition is not satisfied, the demand cannot be met. What will happen to the surplus?

The feasibility condition is also written

$$
\sum_{i=1}^{2} \frac{d_{i}}{\mu_{i}} \leq \frac{r}{r+p}
$$

where $\mu_{i}=1 / \tau_{i}$.
If there were only one part type, this would be

$$
d \leq \mu \frac{r}{r+p}
$$

Look familiar?

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

The surplus satisfies

$$
x_{i}(t)=P_{i}(t)-D_{i}(t)
$$

where

$$
P_{i}(t)=\int_{0}^{t} u_{i}(s) d s ; \quad D_{i}(t)=d_{i} t
$$

Therefore

$$
\frac{d x_{i}(t)}{d t}=u_{i}(t)-d_{i}
$$

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

To define the objective more precisely, let there be a function $g\left(x_{1}, x_{2}\right)$ such that

- g is convex
- $g(0,0)=0$
- $\lim _{x_{1} \rightarrow \infty} g\left(x_{1}, x_{2}\right)=\infty ; \lim _{x_{1} \rightarrow-\infty} g\left(x_{1}, x_{2}\right)=\infty$.
$\cdot \lim _{x_{2} \rightarrow \infty} g\left(x_{1}, x_{2}\right)=\infty ; \lim _{x_{2} \rightarrow-\infty} g\left(x_{1}, x_{2}\right)=\infty$.

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Examples:

- $g\left(x_{1}, x_{2}\right)=A_{1} x_{1}^{2}+A_{2} x_{2}^{2}$
- $g\left(x_{1}, x_{2}\right)=A_{1}\left|x_{1}\right|+A_{2}\left|x_{2}\right|$
- $g\left(x_{1}, x_{2}\right)=g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)$ where

$$
\star g_{i}\left(x_{i}\right)=g_{(i+)} x_{i}^{+}+g_{(i-)} x_{i}^{-},
$$

$$
\star x_{i}^{+}=\max \left(x_{i}, 0\right), x_{i}^{-}=-\min \left(x_{i}, 0\right)
$$

$$
\star g_{(i+)}>0, g_{(i-)}>0 .
$$

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Objective:

$$
\min E \int_{0}^{T} g\left(x_{1}(t), x_{2}(t)\right) d t
$$

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Constraints:

$$
u_{1}(t) \geq 0 ; \quad u_{2}(t) \geq 0
$$

Short-term capacity:

- If the machine is down at time t,

$$
u_{1}(t)=u_{2}(t)=0
$$

Dynamic Programming

Continuous Time, Mixed State

- Assume the machine is up for a short period $[t, t+\delta t]$. Let δt be small enough so that u_{i} is constant; that is

$$
u_{i}(s)=u_{i}(t), s \in[t, t+\delta t]
$$

The machine makes $u_{i}(t) \delta t$ parts of type \boldsymbol{i}. The time required to make that number of Type i parts is $\tau_{i} u_{i}(t) \delta t$.
Therefore

$$
\sum_{i} \tau_{i} u_{i}(t) \delta t \leq \delta t
$$

or

$$
\sum_{i} \tau_{i} u_{i}(t) \leq 1
$$

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Machine state dynamics: Define $\alpha(t)$ to be the repair state of the machine at time $t . \alpha(t)=1$ means the machine is up; $\alpha(t)=0$ means the machine is down.

$$
\begin{aligned}
& \operatorname{prob}(\alpha(t+\delta t)=0 \mid \alpha(t)=1)=p \delta t+o(\delta t) \\
& \operatorname{prob}(\alpha(t+\delta t)=1 \mid \alpha(t)=0)=r \delta t+o(\delta t)
\end{aligned}
$$

The constraints may be written

$$
\sum_{i} \tau_{i} u_{i}(t) \leq \alpha(t) ; \quad u_{i}(t) \geq 0
$$

Dynamic Programming

Continuous Time, Mixed State

Stochastic Example

Dynamic programming problem formulation:

$$
\min E \int_{0}^{T} g\left(x_{1}(t), x_{2}(t)\right) d t
$$

subject to:

$$
\begin{gathered}
\frac{d x_{i}(t)}{d t}=u_{i}(t)-d_{i} \\
\operatorname{prob}(\alpha(t+\delta t)=0 \mid \alpha(t)=1)=p \delta t+o(\delta t) \\
\operatorname{prob}(\alpha(t+\delta t)=1 \mid \alpha(t)=0)=r \delta t+o(\delta t) \\
\sum_{i} \tau_{i} u_{i}(t) \leq \alpha(t) ; \quad u_{i}(t) \geq 0 \\
x(0), \alpha(0) \text { specified }
\end{gathered}
$$

Dynamic
 Programming

Elements of a DP Problem

- state: x all the information that is available to determine the future evolution of the system.
- control: \boldsymbol{u} the actions taken by the decision-maker.
- objective function: \boldsymbol{J} the quantity that must be minimized;
- dynamics: the evolution of the state as a function of the control variables and random events.
- constraints: the limitations on the set of allowable controls
- initial conditions: the values of the state variables at the start of the time interval over which the problem is described. There are also sometimes terminal conditions such as in the network example.

Dynamic

 Elements of a DP Solution- control policy: $\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{t}), t)$. A stationary or time-invariant policy is of the form $u(x(t))$.
- value function: (also called the cost-to-go function) the value $J(x, t)$ of the objective function when the optimal control policy is applied starting at time t, when the initial state is $x(t)=x$.

Bellman's Equation

Continuous x, t

Deterministic

Problem: $\min _{u(t), 0 \leq t \leq T} \int_{0}^{T} g(x(t), u(t)) d t+F(x(T))$
such that

$$
\begin{gathered}
\frac{d x(t)}{d t}=f(x(t), u(t), t) \\
x(0) \text { specified } \\
h(x(t), u(t)) \leq 0
\end{gathered}
$$

$x \in R^{n}, u \in R^{m}, f \in R^{n}, h \in R^{k}$, and g and F are scalars.
Data: $\boldsymbol{T}, \boldsymbol{x}(\mathbf{0})$, and the functions f, g, h, and \boldsymbol{F}.

Bellman's Equation

Continuous x, t

Deterministic

The cost-to-go function is

$$
\begin{gathered}
J(x, t)=\min \int_{t}^{T} g(x(s), u(s)) d s+F(x(T)) \\
J(x(0), 0)=\min \int_{0}^{T} g(x(s), u(s)) d s+F(x(T)) \\
=\min _{\substack{u(t), 0 \leq t \leq T}}\left\{\int_{0}^{t_{1}} g(x(t), u(t)) d t+\int_{t_{1}}^{T} g(x(t), u(t)) d t+F(x(T))\right\} .
\end{gathered}
$$

Bellman's Equation

Continuous x, t

Deterministic

$$
\begin{aligned}
&=\min _{\substack{u(t), . \\
0 \leq t \leq t_{1}}}\left\{\int_{0}^{t_{1}} g(x(t), u(t)) d t+\min _{\substack{u(t), t_{1} \leq t \leq T}}\left[\int_{t_{1}}^{T} g(x(t), u(t)) d t+F(x(T))\right]\right\} \\
&=\min _{\substack{u(t), 0 \leq t \leq t_{1}}}\left\{\int_{0}^{t_{1}} g(x(t), u(t)) d t+J\left(x\left(t_{1}\right), t_{1}\right)\right\} .
\end{aligned}
$$

Bellman's Equation

Continuous x, t

Deterministic

where

$$
J\left(x\left(t_{1}\right), t_{1}\right)=\min _{u(t), t_{1} \leq t \leq T} \int_{t_{1}}^{T} g(x(t), u(t)) d t+F(x(T))
$$

such that

$$
\begin{gathered}
\frac{d x(t)}{d t}=f(x(t), u(t), t) \\
x\left(t_{1}\right) \text { specified } \\
h(x(t), u(t)) \leq 0
\end{gathered}
$$

Bellman's Equation

Continuous x, t

Deterministic

Break up $\left[t_{1}, \boldsymbol{T}\right]$ into $\left[t_{1}, t_{1}+\delta t\right] \cup\left[t_{1}+\delta t, T\right]:$

$$
\begin{aligned}
& J\left(x\left(t_{1}\right), t_{1}\right)=\min _{u\left(t_{1}\right)}\left\{\int_{t_{1}}^{t_{1}+\delta t} g(x(t), u(t)) d t\right. \\
&+\left.J\left(x\left(t_{1}+\delta t\right), t_{1}+\delta t\right)\right\}
\end{aligned}
$$

where δt is small enough so that we can approximate $x(t)$ and $u(t)$ with constant $\boldsymbol{x}\left(t_{1}\right)$ and $\boldsymbol{u}\left(t_{1}\right)$, during the interval. Then, approximately,
$J\left(x\left(t_{1}\right), t_{1}\right)=\min _{u\left(t_{1}\right)}\left\{g\left(x\left(t_{1}\right), u\left(t_{1}\right)\right) \delta t+J\left(x\left(t_{1}+\delta t\right), t_{1}+\delta t\right)\right\}$

Bellman's Equation

Continuous x, t

Deterministic

Or,

$$
\begin{aligned}
& J\left(x\left(t_{1}\right), t_{1}\right)=\min _{u\left(t_{1}\right)}\left\{g\left(x\left(t_{1}\right), u\left(t_{1}\right)\right) \delta t+J\left(x\left(t_{1}\right), t_{1}\right)+\right. \\
& \left.\frac{\partial J}{\partial x}\left(x\left(t_{1}\right), t_{1}\right)\left(x\left(t_{1}+\delta t\right)-x\left(t_{1}\right)\right)+\frac{\partial J}{\partial t}\left(x\left(t_{1}\right), t_{1}\right) \delta t\right\}
\end{aligned}
$$

Note that

$$
x\left(t_{1}+\delta t\right)=x\left(t_{1}\right)+\frac{d x}{d t} \delta t=x\left(t_{1}\right)+f\left(x\left(t_{1}\right), u\left(t_{1}\right), t_{1}\right) \delta t
$$

Bellman's Equation

Continuous x, t

Deterministic

Therefore

$$
J\left(x, t_{1}\right)=J\left(x, t_{1}\right)
$$

$+\min _{u}\left\{g(x, u) \delta t+\frac{\partial J}{\partial x}\left(x, t_{1}\right) f\left(x, u, t_{1}\right) \delta t+\frac{\partial J}{\partial t}\left(x, t_{1}\right) \delta t\right\}$
where $x=x\left(t_{1}\right) ; u=u\left(t_{1}\right)=u\left(x\left(t_{1}\right), t_{1}\right)$.
Then (dropping the t subscript)

$$
-\frac{\partial J}{\partial t}(x, t)=\min _{u}\left\{g(x, u)+\frac{\partial J}{\partial x}(x, t) f(x, u, t)\right\}
$$

Bellman's Equation

Continuous x, t

Deterministic

This is the Bellman equation. It is the counterpart of the recursion equation for the network example.

- If we had a guess of $J(x, t)$ (for all x and t) we could confirm it by performing the minimization.
- If we knew $J(x, t)$ for all x and t, we could determine u by performing the minimization. \boldsymbol{U} could then be written

$$
u=U\left(x, \frac{\partial J}{\partial x}, t\right) .
$$

This would be a feedback law.
The Bellman equation is usually impossible to solve analytically or numerically. There are some important special cases that can be solved analytically.

Bellman's Equation

Continuous x, t

Example

Bang-Bang Control

$$
\min \int_{0}^{\infty}|x| d t
$$

subject to

$$
\begin{aligned}
& \frac{d x}{d t}=u \\
& x(0) \text { specified } \\
& -1 \leq u \leq 1
\end{aligned}
$$

Bellman's Equation

Continuous x, t

Example

The Bellman equation is

$$
-\frac{\partial J}{\partial t}(x, t)=\min _{\substack{u,-1 \leq u \leq 1}}\left\{|x|+\frac{\partial J}{\partial x}(x, t) u\right\}
$$

$J(x, t)=J(x)$ is a solution because the time horizon is infinite and t does not appear explicitly in the problem data (ie, $\boldsymbol{g}(\boldsymbol{x})=|\boldsymbol{x}|$ is not a function of t.
Therefore

$$
0=\min _{\substack{u,-1 \leq u \leq 1}}\left\{|x|+\frac{d J}{d x}(x) u\right\}
$$

$J(0)=0$ because if $x(0)=0$ we can choose $u(t)=0$ for all t. Then $x(t)=0$ for all t and the integral is 0 . There is no possible choice of $u(t)$ that will make the integral less than 0 , so this is the minimum.

Bellman's Equation

Continuous x, t

Example

The minimum is achieved when

$$
u=\left\{\begin{array}{cc}
-1 & \text { if } \frac{d J}{d x}(x)>0 \\
1 & \text { if } \frac{d J}{d x}(x)<0 \\
\text { undetermined } & \text { if } \frac{d J}{d x}(x)=0
\end{array}\right.
$$

Why?

Bellman's Equation

Continuous x, t

Example

Consider the set of \boldsymbol{x} where $\boldsymbol{d J} / \boldsymbol{d x}(\boldsymbol{x})<\mathbf{0}$. For \boldsymbol{x} in that set, $u=1$, so

$$
0=|x|+\frac{d J}{d x}(x)
$$

or

$$
\frac{d J}{d x}(x)=-|x|
$$

Similarly, if x is such that $d J / d x(x)>0$ and $u=-1$,

$$
\frac{d J}{d x}(x)=|x|
$$

Bellman's Equation

Continuous x, t

Example

To complete the solution, we must determine where $d J / d x>0$, <0, and $=0$.

We already know that $\boldsymbol{J}(\mathbf{0})=\mathbf{0}$. We must have $\boldsymbol{J}(\boldsymbol{x})>\mathbf{0}$ for all $x \neq 0$ because $|x|>0$ so the integral of $|x(t)|$ must be positive.

Since $J(x)>J(0)$ for all $\boldsymbol{x} \neq 0$, we must have

$$
\begin{aligned}
& \frac{d J}{d x}(x)<0 \text { for } x<0 \\
& \frac{d J}{d x}(x)>0 \text { for } x>0
\end{aligned}
$$

Bellman's Equation

Continuous x, t

Example

Therefore

$$
\frac{d J}{d x}(x)>=x
$$

so

$$
J=\frac{1}{2} x^{2}
$$

and

$$
u=\left\{\begin{array}{rll}
\mathbf{1} & \text { if } & \boldsymbol{x}<\mathbf{0} \\
\mathbf{0} & \text { if } & \boldsymbol{x}=\mathbf{0} \\
-\mathbf{1} & \text { if } & \boldsymbol{x}>\mathbf{0}
\end{array}\right.
$$

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

$J(x(0), \alpha(0), 0)=\min _{u} E\left\{\int_{0}^{T} g(x(t), u(t)) d t+F(x(T))\right\}$
such that

$$
\frac{d x(t)}{d t}=f(x, \alpha, u, t)
$$

$\operatorname{prob}[\alpha(t+\delta t)=i \mid \alpha(t)=j]=\lambda_{i j} \delta t$ for all $i, j, i \neq j$
$x(0), \alpha(0)$ specified

$$
h(x(t), \alpha(t), u(t)) \leq 0
$$

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

Getting the Bellman equation in this case is more complicated because α changes by large amounts when it changes.
Let $\boldsymbol{H}(\alpha)$ be some function of α. We need to calculate

$$
\begin{gathered}
\tilde{E} H(\alpha(t+\delta t))=E\{H(\alpha(t+\delta t)) \mid \alpha(t)\} \\
=\sum_{j} H(j) \operatorname{prob}\{\alpha(t+\delta t)=j \mid \alpha(t)\}
\end{gathered}
$$

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

$$
\begin{gathered}
=\sum_{j \neq \alpha(t)} H(j) \lambda_{j \alpha(t)} \delta t+H(\alpha(t))\left(1-\sum_{j \neq \alpha(t)} \lambda_{j \alpha(t)} \delta t\right)+o(\delta t) \\
=\sum_{j \neq \alpha(t)} H(j) \lambda_{j \alpha(t)} \delta t+H(\alpha(t))\left(1+\lambda_{\alpha(t) \alpha(t)} \delta t\right)+o(\delta t) \\
E\{H(\alpha(t+\delta t)) \mid \alpha(t)\}=H(\alpha(t))+\left[\sum_{j} H(j) \lambda_{j \alpha(t)}\right] \delta t+o(\delta t)
\end{gathered}
$$

We use this in the derivation of the Bellman equation.

Bellman's Equation

Continuous x, t,Discrete α

Stochastic

$$
J(x(t), \alpha(t), t)=\min _{\substack{u(s), t \leq s<T}} E\left\{\int_{t}^{T} g(x(s), u(s)) d s+F(x(T))\right\}
$$

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

$$
\begin{array}{r}
=\min _{\substack{u(s), 0 \leq s \leq t+\delta t}} E\left\{\int_{t}^{t+\delta t} g(x(s), u(s)) d s\right. \\
\left.+\min _{\substack{u(s), t+\delta t \leq s \leq T}} E\left[\int_{t+\delta t}^{T} g(x(s), u(s)) d s+F(x(T))\right]\right\}
\end{array}
$$

Bellman's Equation

Continuous x, t, Discrete α

$$
=\min _{\substack{u(s), t \leq s \leq t+\delta t}} \tilde{E}\left\{\int_{t}^{t+\delta t} g(x(s), u(s)) d s\right.
$$

$$
+J(x(t+\delta t), \alpha(t+\delta t), t+\delta t)\}
$$

Next, we expand the second term in a Taylor series about $\boldsymbol{x}(\boldsymbol{t})$. We leave $\alpha(t+\delta t)$ alone, for now.

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

$$
J(x(t), \alpha(t), t)=
$$

$$
\min _{u(t)} \tilde{E}\{g(x(t), u(t)) \delta t+J(x(t), \alpha(t+\delta t), t)+
$$

$\left.\frac{\partial J}{\partial x}(x(t), \alpha(t+\delta t), t) \delta x(t)+\frac{\partial J}{\partial t}(x(t), \alpha(t+\delta t), t) \delta t\right\}+o(\delta t)$ where

$$
\delta x(t)=x(t+\delta t)-x(t)=f(x(t), \alpha(t), u(t), t) \delta t+o(\delta t)
$$

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

Using the expansion of $\tilde{E} \boldsymbol{H}(\alpha(t+\delta t))$,

$$
\left.\begin{array}{l}
J(x(t), \alpha(t), t)=\min _{u(t)}\{g(x(t), u(t)) \delta t \\
\quad+J(x(t), \alpha(t), t)+\sum_{j} J(x(t), j, t) \lambda_{j \alpha(t)} \delta t
\end{array}\right\} \begin{aligned}
& \left.+\frac{\partial J}{\partial x}(x(t), \alpha(t), t) \delta x(t)+\frac{\partial J}{\partial t}(x(t), \alpha(t), t) \delta t\right\}+o(\delta t)
\end{aligned}
$$

We can clean up notation by replacing $x(t)$ with $x, \alpha(t)$ with α, and $u(t)$ with u.

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

$$
\begin{gathered}
J(x, \alpha, t)= \\
\min _{u}\left\{g(x, u) \delta t+J(x, \alpha, t)+\sum_{j} J(x, j, t) \lambda_{j \alpha} \delta t\right. \\
\left.+\frac{\partial J}{\partial x}(x, \alpha, t) \delta x+\frac{\partial J}{\partial t}(x, \alpha, t) \delta t\right\}+o(\delta t)
\end{gathered}
$$

We can subtract $J(x, \alpha, t)$ from both sides and use the expression for $\boldsymbol{\delta} \boldsymbol{x}$ to get ...

Bellman's Equation

Continuous x, t, Discrete α

$$
\begin{gathered}
0=\min _{u}\left\{g(x, u) \delta t+\sum_{j} J(x, j, t) \lambda_{j \alpha} \delta t\right. \\
\left.+\frac{\partial J}{\partial x}(x, \alpha, t) f(x, \alpha, u, t) \delta t+\frac{\partial J}{\partial t}(x, \alpha, t) \delta t\right\}+o(\delta t)
\end{gathered}
$$

or,

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

$$
\begin{gathered}
-\frac{\partial J}{\partial t}(x, \alpha, t)=\sum_{j} J(x, j, t) \lambda_{j \alpha}+ \\
\min _{u}\left\{g(x, u)+\frac{\partial J}{\partial x}(x, \alpha, t) f(x, \alpha, u, t)\right\}
\end{gathered}
$$

- Bad news: usually impossible to solve;
- Good news: insight.

Bellman's Equation

Continuous x, t,Discrete α

Stochastic

An approximation: when T is large and f is not a function of t, typical trajectories look like this:

Bellman's Equation

Continuous x, t, Discrete α

Stochastic

That is, in the long run, x approaches a steady-state probability distribution. Let J^{*} be the expected value of $g(x, u)$, where u is the optimal control.
Suppose we started the problem with $x(0)$ a random variable whose probability distribution is the steady-state distribution. Then, for large T,

$$
E J=\min _{u} E\left\{\int_{0}^{T} g(x(t), u(t)) d t+F(x(T))\right\}
$$

$$
\approx J^{*} T
$$

Bellman's Equation

Continuous x, t,Discrete α

Stochastic

For $x(0)$ and $\alpha(0)$ specified

$$
J(x(0), \alpha(0), 0) \approx J^{*} T+W(x(0), \alpha(0))
$$

or, more generally, for $x(t)=x$ and $\alpha(t)=\alpha$ specified,

$$
J(x, \alpha, t) \approx J^{*}(T-t)+W(x, \alpha)
$$

Flexible Manufacturing System Control

Single machine, multiple part types. x, u, d are N-dimensional vectors.

$$
\min E \int_{0}^{T} g(x(t)) d t
$$

subject to:

$$
\begin{gathered}
\frac{d x_{i}(t)}{d t}=u_{i}(t)-d_{i}, \quad i=1, \ldots, N \\
\operatorname{prob}(\alpha(t+\delta t)=0 \mid \alpha(t)=1)=p \delta t+o(\delta t) \\
\operatorname{prob}(\alpha(t+\delta t)=1 \mid \alpha(t)=0)=r \delta t+o(\delta t) \\
\sum_{i} \tau_{i} u_{i}(t) \leq \alpha(t) ; \quad u_{i}(t) \geq 0 \\
x(0), \alpha(0) \text { specified }
\end{gathered}
$$

Flexible Manufacturing System Control

Define $\Omega(\alpha)=\left\{u \mid \sum_{i} \tau_{i} u_{i} \leq \alpha\right\}$. Then, for $\alpha=0,1$,

$$
\begin{array}{r}
-\frac{\partial J}{\partial t}(x, \alpha, t)=\sum_{j} J(x, j, t) \lambda_{j \alpha}+ \\
\min _{u \in \Omega(\alpha)}\left\{g(x)+\frac{\partial J}{\partial x}(x, \alpha, t)(u-d)\right\}
\end{array}
$$

Flexible Manufacturing System Control

Approximating J with $J^{*}(T-t)+W(x, \alpha)$ gives:

$$
\begin{aligned}
& J^{*}=\sum_{j}\left(J^{*}(T-t)+W(x, j)\right) \lambda_{j \alpha}+ \\
& \min _{u \in \Omega(\alpha)}\left\{g(x)+\frac{\partial W}{\partial x}(x, \alpha, t)(u-d)\right\}
\end{aligned}
$$

Recall that

$$
\sum_{j} \lambda_{j \alpha}=0 \ldots
$$

Flexible Manufacturing System Control

so

$$
\begin{gathered}
J^{*}=\sum_{j} W(x, j) \lambda_{j \alpha}+ \\
\min _{u \in \Omega(\alpha)}\left\{g(x)+\frac{\partial W}{\partial x}(x, \alpha, t)(u-d)\right\}
\end{gathered}
$$

for $\alpha=0,1$

Flexible Manufacturing System Control

This is actually two equations, one for $\alpha=0$, one for $\alpha=1$.

$$
\begin{gathered}
J^{*}=g(x)+W(x, 1) r-W(x, 0) r-\frac{\partial W}{\partial x}(x, 0) d \\
\text { for } \alpha=0
\end{gathered}
$$

$$
J^{*}=g(x)+W(x, 0) p-W(x, 1) p+\min _{u \in \Omega(1)}\left[\frac{\partial W}{\partial x}(x, 1)(u-d)\right]
$$

$$
\text { for } \alpha=1
$$

Flexible
 Single-part-type case

 Manufacturing System Control
Technically, not flexible!

Now, \boldsymbol{x} and \boldsymbol{u} are scalars, and

$$
\begin{gathered}
\Omega(1)=[0,1 / \tau]=[0, \mu] \\
J^{*}=g(x)+W(x, 1) r-W(x, 0) r-\frac{d W}{d x}(x, 0) d \\
\text { for } \alpha=0 \\
J^{*}=g(x)+W(x, 0) p-W(x, 1) p+\min _{0 \leq u \leq \mu}\left[\frac{d W}{d x}(x, 1)(u-d)\right] \\
\text { for } \alpha=1
\end{gathered}
$$

Flexible Manufacturing
 Single-part-type case System Control

See book, Sections 2.6.2 and 9.3; see Probability slides \# 91-120.

When $\alpha=0, u=0$.
When $\alpha=1$,

- if $\frac{d W}{d x}<0, u=\mu$,
- if $\frac{d W}{d x}=0, u$ unspecified,
- if $\frac{d W}{d x}>0, u=0$.

Flexible Manufacturing System Control
 Single-part-type case

$W(x, \alpha)$ has been shown to be convex in x. If the minimum of $W(x, 1)$ occurs at $x=Z$ and $W(x, 1)$ is differentiable for all x, then

- $\frac{d W}{d x}<0 \leftrightarrow x<Z$
- $\frac{d W}{d x}=0 \leftrightarrow x=Z$
- $\frac{d W}{d x}>0 \leftrightarrow x>Z$

Therefore,

- if $x<Z, \quad u=\mu$,
- if $x=Z, u$ unspecified,
- if $x>Z, u=0$.

Flexible Manufacturing System Control

Surplus, or inventory/backlog:

Single-part-type case

$$
\frac{d x(t)}{d t}=u(t)-d
$$

Production policy: Choose Z (the hedging point) Then,

- if $\alpha=1$,

$$
\begin{aligned}
& \star \text { if } x<Z, \\
& \star \text { if } x=Z, \\
& \star \text { if } x>Z, \\
& \star=d, \\
&
\end{aligned}
$$

- if $\alpha=0$,
$\star u=0$.

How do we choose Z ?
Copyright (C)2007 Stanley B. Gershwin.

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

$$
J^{*}=E g(x)=g(Z) P(Z, 1)+\int_{-\infty}^{Z} g(x)[f(x, 0)+f(x, 1)] d x
$$

in which P and f form the steady-state probability distribution of x. We choose Z to minimize J^{*}. P and f are given by

$$
\begin{gathered}
f(x, 0)=A e^{b x} \\
f(x, 1)=A \frac{d}{\mu-d} e^{b x} \\
P(Z, 1)=A \frac{d}{p} e^{b Z}
\end{gathered}
$$

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

where

$$
b=\frac{r}{d}-\frac{p}{\mu-d}
$$

and \boldsymbol{A} is chosen so that

$$
\int_{-\infty}^{Z}[f(x, 0)+f(x, 1)] d x+P(Z, 1)=1
$$

After some manipulation,

$$
A=\left[\frac{b p(\mu-d)}{d b(\mu-d)+\mu p}\right] e^{-b Z}
$$

and

$$
P(Z, 1)=\frac{d b(\mu-d)}{d b(\mu-d)+\mu p}
$$

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

Since $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{g}_{+} \boldsymbol{x}^{+}+\boldsymbol{g}_{-} \boldsymbol{x}^{-}$,

- if $Z \leq 0$, then

$$
J^{*}=-g_{-} Z P(Z, 1)-\int_{-\infty}^{Z} g_{-} x[f(x, 0)+f(x, 1)] d x
$$

- if $Z>0$,

$$
\begin{aligned}
J^{*}=g_{+} & Z P(Z, 1)-\int_{-\infty}^{0} g_{-} x[f(x, 0)+f(x, 1)] d x \\
& +\int_{0}^{Z} g_{+} x[f(x, 0)+f(x, 1)] d x
\end{aligned}
$$

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

To minimize J^{*} :

- if $g_{+}-K b\left(g_{+}+g_{-}\right)<0, Z=\frac{\ln \left(K b\left(1+\frac{g_{-}}{g_{+}}\right)\right)}{b}$.
- if $g_{+}-\boldsymbol{K b}\left(\boldsymbol{g}_{+}+g_{-}\right) \geq 0, Z=0$
where $K=$
$\frac{\mu p}{b\left(\mu b d-d^{2} b+\mu p\right)}=\frac{\mu p}{b(r+p)(\mu-d)}=\frac{1}{b}\left[\frac{\mu p}{d b(\mu-d)+\mu p}\right]$
Z is a function of $d, \mu, r, p, g_{+}, g_{-}$.

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

That is, we choose Z such that

$$
e^{b Z}=\min \left\{1, K b\left(\frac{g_{+}+g_{-}}{g_{+}}\right)\right\}
$$

or

$$
e^{-b Z}=\max \left\{1, \frac{1}{K b}\left(\frac{g_{+}}{g_{+}+g_{-}}\right)\right\}
$$

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

$$
\begin{aligned}
& \operatorname{prob}(x \leq 0)=\int_{-\infty}^{0}(f(x, 0)+f(x, 1)) d x \\
&=A\left(1+\frac{d}{\mu-d}\right) \int_{-\infty}^{0} e^{b x} d x \\
&=A\left(1+\frac{d}{\mu-d}\right) \frac{1}{b}=A \frac{\mu}{b(\mu-d)} \\
&= {\left[\frac{b p(\mu-d)}{d b(\mu-d)+\mu p}\right] e^{-b Z} \frac{\mu}{b(\mu-d)} } \\
& \quad=\left[\frac{\mu p}{d b(\mu-d)+\mu p}\right] e^{-b Z}
\end{aligned}
$$

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

Or,

$$
\operatorname{prob}(x \leq 0)=\left[\frac{\mu p}{d b(\mu-d)+\mu p}\right] \max \left\{1, \frac{1}{K b}\left(\frac{g_{+}}{g_{+}+g_{-}}\right)\right\}
$$

It can be shown that

$$
K b=\frac{\mu p}{\mu p+b d(\mu-d)}
$$

Therefore

$$
\begin{aligned}
& \operatorname{prob}(x \leq 0)=K b \max \left\{1, \frac{1}{K b}\left(\frac{g_{+}}{g_{+}+g_{-}}\right)\right\} \\
& \quad=\max \left\{\frac{\mu p}{\mu p+b d(\mu-d)}, \frac{g_{+}}{g_{+}+g_{-}}\right\}
\end{aligned}
$$

Flexible Manufacturing System Control

Single-part-type case

Determination of Z

That is,

- if $\frac{\mu p}{\mu p+b d(\mu-d)}>\frac{g_{+}}{g_{+}+g_{-}}$, then $Z=0$ and

$$
\operatorname{prob}(x \leq 0)=\frac{\mu p}{\mu p+b d(\mu-d)}
$$

- if $\frac{\mu p}{\mu p+b d(\mu-d)}<\frac{g_{+}}{g_{+}+g_{-}}$, then $Z>0$ and

$$
\operatorname{prob}(x \leq 0)=\frac{g_{+}}{g_{+}+g_{-}}
$$

This looks a lot like the solution of the "newsboy problem."

Flexible Manufacturing System Control

Single-part-type case

Base values: $g_{+}=1, g_{-}=10 d=.7, \mu=1 ., r=.09$, $p=.01$.

Flexible Manufacturing System Control

Single-part-type case

Z vs. g_{+}

Base values: $g_{+}=1, g_{-}=10 d=.7, \mu=1 ., r=.09$, $p=.01$.

Flexible Manufacturing System Control

Single-part-type case

Z vs. g_{-}

Base values: $g_{+}=1, g_{-}=10 d=.7, \mu=1 ., r=.09$, $p=.01$.

Flexible Manufacturing System Control

Single-part-type case

Z vs. p

Base values: $g_{+}=1, g_{-}=10 d=.7, \mu=1 ., r=.09$, $p=.01$.

Flexible Manufacturing System Control
 Two-part-type case

Capacity set $\Omega(1)$ when machine is up.

Flexible
 Two-part-type case Manufacturing System Control

We must find $u(x, \alpha)$ to satisfy

$$
\min _{u \in \Omega(\alpha)}\left\{\frac{\partial W}{\partial x}(x, \alpha, t)\right\} u
$$

Partial solution of LP:

- If $\partial W / \partial x_{1}>0$ and $\partial W / \partial x_{2}>0, u_{1}=u_{2}=0$.
- If $\partial W / \partial x_{1}<\partial W / \partial x_{2}<0, u_{1}=\mu_{1}, u_{2}=0$.
- If $\partial W / \partial x_{2}<\partial W / \partial x_{1}<0, u_{2}=\mu_{2}, u_{1}=0$.

Problem: no complete analytical solution available.

Flexible Manufacturing System Control
 Two-part-type case

Case: Exact solution if $Z=\left(\boldsymbol{Z}_{2}, Z_{2}\right)=0$

Flexible Manufacturing System Control

Case: Approximate solution if $\boldsymbol{Z}>\mathbf{0}$

Flexible Manufacturing System Control
 Two-part-type case

Two parts, multiple machines without buffers:

Flexible Manufacturing System Control

- Proposed approximate solution for multiple-part, single machine system:
* Rank order the part types, and bring them to their hedging points in that order.

Flexible Manufacturing System Control

Single-part-type case

Surplus and tokens

- Operating Machine M according to the hedging point policy is equivalent to operating this assembly system according to a finite buffer policy.

Flexible Manufacturing System Control

Single-part-type case

Surplus and tokens

- \boldsymbol{D} is a demand generator.
\star Whenever a demand arrives, \boldsymbol{D} sends a token to \boldsymbol{B}.
- S is a synchronization machine.
$\star S$ is perfectly reliable and infinitely fast.

- $F G$ is a finite finished goods buffer.
- \boldsymbol{B} is an infinite backlog buffer.

Flexible Manufacturing System Control

Single-part-type case

Material/token policies

- An operation cannot take place unless there is a token available.
- Tokens authorize production.
- These policies can often be implemented either with finite buffer space, or a finite number of tokens. Mixtures are also possible.
- Buffer space could be shelf space, or floor space indicated with paint or tape.

Multi-stage systems

Proposed policy

To control

add an information flow system:

Multi-stage systems

Proposed policy

- $\boldsymbol{B}_{\boldsymbol{i}}$ are material buffers and are finite.
- $\boldsymbol{S} \boldsymbol{B}_{\boldsymbol{i}}$ are surplus buffers and are finite.
- $\boldsymbol{B} \boldsymbol{B}_{\boldsymbol{i}}$ are backlog buffers and are infinite.
- The sizes of $\boldsymbol{B}_{\boldsymbol{i}}$ and $\boldsymbol{S} \boldsymbol{B}_{\boldsymbol{i}}$ are control parameters.
- Problem: predicting the performance of this system.

Multi-stage systems

Three Views of Scheduling

Three kinds of scheduling policies, which are sometimes exactly the same.

- Surplus-based: make decisions based on how much production exceed demand.
- Time-based: make decisions based on how early or late a product is.
- Token-based: make decisions based on presence or absence of tokens.

Multi-stage systems

Objective of Scheduling

Surplus and time

- Objective is to keep cumulative production close to cumulative demand.
- Surplus-based policies look at vertical differences between the graphs.
- Time-based policies look at the horizontal differences.

Multi-stage systems

Other policies

CONWIP, kanban, and hybrid

- CONWIP: finite population, infinite buffers
- kanban: infinite population, finite buffers
- hybrid: finite population, finite buffers

Multi-stage systems

Other policies

CONWIP, kanban, and hybrid

CONWIP Stuppy

Token flow

Demand is less than capacity.
How does the number of tokens affect performance (production rate, inventory)?

Multi-stage systems

Other policies

CONWIP, kanban, and hybrid

Multi-stage systems

Other policies

Basestock

Multi-stage systems

Other policies

FIFO

- First-In, First Out.
- Simple conceptually, but you have to keep track of arrival times.
- Leaves out much important information: \star due date, value of part, current surplus/backlog state, etc.

Multi-stage systems

Other policies

EDD

- Earliest due date.
- Easy to implement.
- Does not consider work remaining on the item, value of the item, etc..

Multi-stage systems

Other policies

SRPT

- Shortest Remaining Processing Time
- Whenever there is a choice of parts, load the one with least remaining work before it is finished.
- Variations: include waiting time with the work time. Use expected time if it is random.

Multi-stage systems

Other policies

Critical ratio

- Widely used, but many variations. One version:
\star Define $\mathrm{CR}=\underline{\text { Processing time remaining until completion }}$
Due date - Current time
\star Choose the job with the highest ratio (provided it is positive).
* If a job is late, the ratio will be negative, or the denominator will be zero, and that job should be given highest priority.
\star If there is more than one late job, schedule the late jobs in SRPT order.

Multi-stage systems

Other policies

Least Slack

- This policy considers a part's due date.
- Define slack = due date - remaining work time
- When there is a choice, select the part with the least slack.
- Variations involve different ways of estimating remaining time.

Multi-stage systems

Other policies

Drum-Buffer-Rope

- Due to Eli Goldratt.
- Based on the idea that every system has a bottleneck.
- Drum: the common production rate that the system operates at, which is the rate of flow of the bottleneck.
- Buffer: DBR establishes a CONWIP policy between the entrance of the system and the bottleneck. The buffer is the CONWIP population.
- Rope: the limit on the difference in production between different stages in the system.
- But: What if bottleneck is not well-defined?

Conclusions

- Many policies and approaches.
- No simple statement telling which is better.
- Policies are not all well-defined in the literature or in practice.
- My opinion:
\star This is because policies are not derived from first principles.
* Instead, they are tested and compared.
\star Currently, we have little intuition to guide policy development and choice.

MIT OpenCourseWare
|http://ocw.mit.edu

2.852 Manufacturing Systems Analysis

Spring 2010

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

