MIT 2.852 Manufacturing Systems Analysis Lectures 19–21

Scheduling: Real-Time Control of Manufacturing Systems

Stanley B. Gershwin

Spring, 2007

Copyright © 2007 Stanley B. Gershwin.

Definitions

• Events may be *controllable* or not, and *predictable* or not.

	controllable	uncontrollable
predictable	loading a part	lunch
unpredictable	???	machine failure

Definitions

- Scheduling is the selection of times for future controllable events.
- Ideally, scheduling systems should deal with *all* controllable events, and not just production.
 - ★ That is, they should select times for operations, set-up changes, preventive maintenance, etc.
 - They should at least be *aware* of set-up changes, preventive maintenance, etc.when they select times for operations.

Definitions

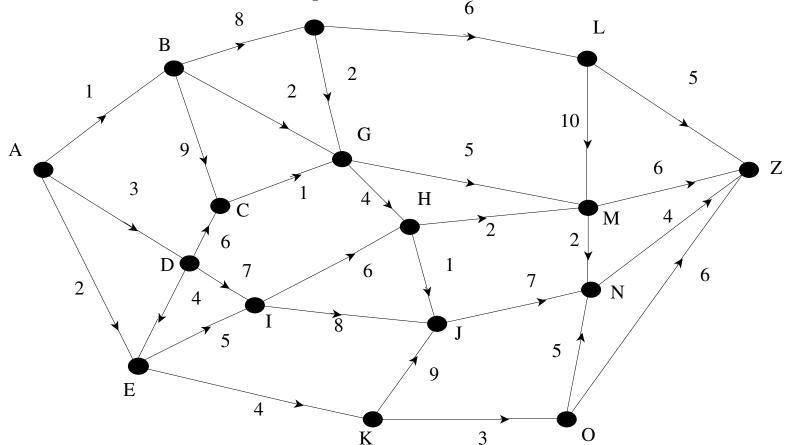
• Because of recurring random events, scheduling is an on-going process, and not a one-time calculation.

 Scheduling, or shop floor control, is the bottom of the scheduling/planning hierarchy. It translates *plans* into *events*.

Issues in Factory Control

- Problems are *dynamic* ; current decisions influence future behavior and requirements.
- There are large numbers of parameters, time-varying quantities, and possible decisions.
- Some time-varying quantities are *stochastic*.
- Some relevant information (MTTR, MTTF, amount of inventory available, etc.) is not known.
- Some possible control policies are *unstable* .

Discrete Time, Discrete State, Deterministic



Example

Problem

Problem: find the least expensive path from A to Z.

Copyright © 2007 Stanley B. Gershwin.

Example

Problem

Let g(i, j) be the cost of traversing the link from *i* to *j*. Let i(t) be the *t*th node on a path from *A* to *Z*. Then the path cost is

$$\sum_{t=1}^T g(i(t-1),i(t))$$

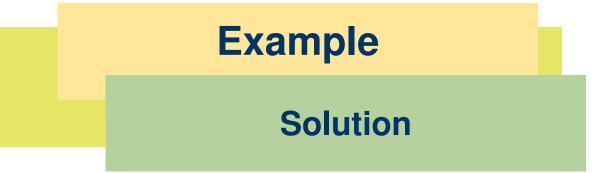
where T is the number of nodes on the path, i(0) = A, and i(T) = Z.

T is not specified; it is part of the solution.

Example

Solution

- A possible approach would be to enumerate all possible paths (possible solutions). However, there can be a lot of possible solutions.
- Dynamic programming reduces the number of possible solutions that must be considered.
 - * Good news: it often greatly reduces the number of possible solutions.
 - ★ Bad news: it often does not reduce it enough to give an exact optimal solution practically (ie, with limited time and memory). This is the curse of dimensionality.
 - ★ Good news: we can learn something by characterizing the optimal solution, and that sometimes helps in getting an analytical optimal solution or an approximation.
 - * Good news: it tells us something about stochastic problems.



Instead of solving the problem only for A as the initial point, we solve it for *all* possible initial points.

For every node i, define J(i) to be the *optimal cost to go* from Node i to Node Z (the cost of the optimal path from i to Z). We can write

$$J(i) = \sum_{t=1}^T g(i(t-1),i(t))$$

where $i(0) = i; i(T) =$ Z; $(i(t-1),i(t))$ is a link for every t .

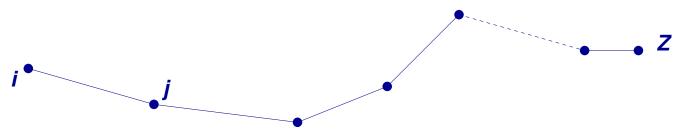
Dynamic
ProgrammingExampleSolution

Then J(i) satisfies

$$J(Z) = 0$$

and, if the optimal path from i to Z traverses link (i, j),

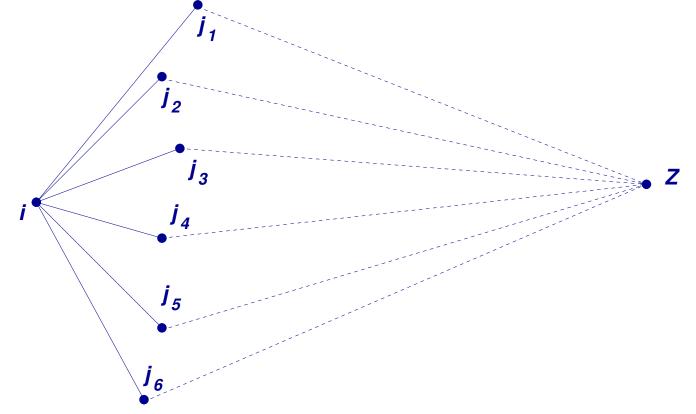
$$J(i) = g(i,j) + J(j).$$



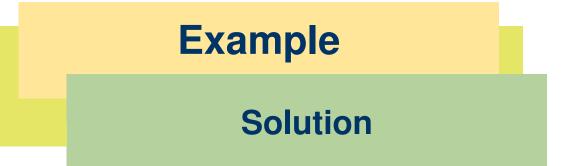
Example

Solution

Suppose that several links go out of Node *i*.



Suppose that for each node j for which a link exists from i to j, the optimal path and optimal cost J(j) from j to Z is known.



Then the optimal path from i to Z is the one that minimizes the sum of the costs from i to j and from j to Z. That is,

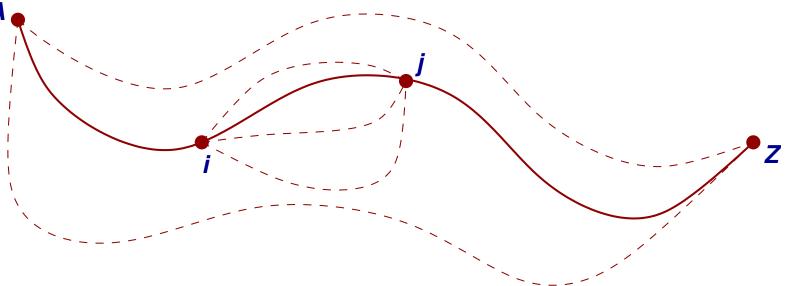
$$J(i) = \min_{j} \left[g(i,j) + J(j) \right]$$

where the minimization is performed over all j such that a link from i to j exists. This is the *Bellman equation*.

This is a *recursion* or *recursive equation* because J() appears on both sides, although with different arguments.

J(i) can be calculated from this if J(j) is known for every node j such that (i, j) is a link.

Bellman's Principle of Optimality: if i and j are nodes on an optimal path from A to Z, then the portion of that path from A to Z between i and j is an optimal path from i to j.



Example Solution

Example: Assume that we have determined that J(O) = 6 and J(J) = 11.

To calculate J(K),

$$egin{aligned} J(K) &= \min\left\{ egin{aligned} g(K,O) + J(O) \ g(K,J) + J(J) \ \end{aligned}
ight\} \ &= \min\left\{ egin{aligned} 3+6 \ 9+11 \ \end{array}
ight\} = 9. \end{aligned}$$

Example

Solution

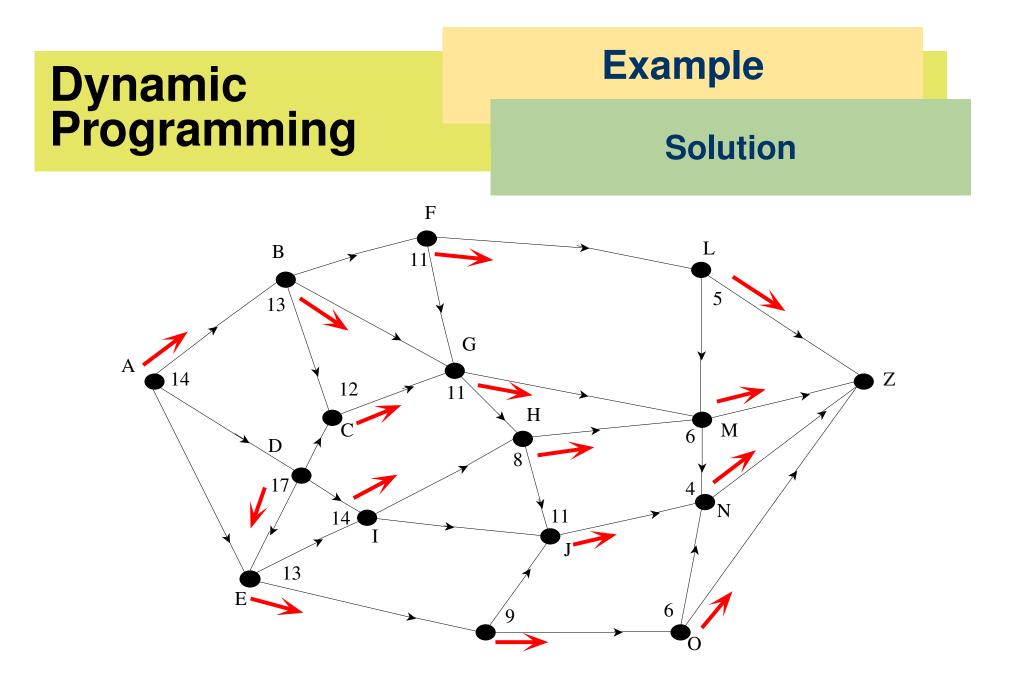
Algorithm

- 1. Set J(Z) = 0.
- 2. Find some node *i* such that
 - J(i) has not yet been found, and
 - for each node j in which link (i, j) exists, J(j) is already calculated.
 - Assign J(i) according to

$$J(i) = \min_{j} \left[g(i,j) + J(j) \right]$$

3. Repeat Step 2 until all nodes, including A, have costs calculated.

Copyright © 2007 Stanley B. Gershwin.



Example

Solution

The important features of a dynamic programming problem are

- the state (i);
- the decision (to go to j after i);
- ullet the objective function $\left(\sum_{t=1}^T g(i(t-1),i(t))
 ight)$
- the cost-to-go function (J(i)) ;
- the one-step recursion equation that determines J(i) $(J(i) = \min_j [g(i, j) + J(j)]);$
- *that the solution is determined for every i*, not just A and not just nodes on the optimal path;
- that J(i) depends on the nodes to be visited after i, not those between A and i. The only thing that matters is the present state and the future;
- that J(i) is obtained by working backwards.

Example

Solution

This problem was

• discrete time, discrete state, deterministic.

Other versions:

- discrete time, discrete state, stochastic
- continuous time, discrete state, deterministic
- continuous time, discrete state, stochastic
- continuous time, mixed state, deterministic
- continuous time, mixed state, stochastic

in stochastic systems, we optimize the *expected* cost.

Discrete time, discrete state

Stochastic

Suppose

- g(i, j) is a random variable; or
- if you are at i and you choose j, you actually go to k with probability $\mathbf{p}(i, j, k)$.

Then the cost of a sequence of choices is random. The objective function is

$$E\left(\sum_{t=1}^T g(i(t-1),i(t))
ight)$$

and we can define

$$J(i) = E\min_{j} \left[g(i,j) + J(j)
ight]$$

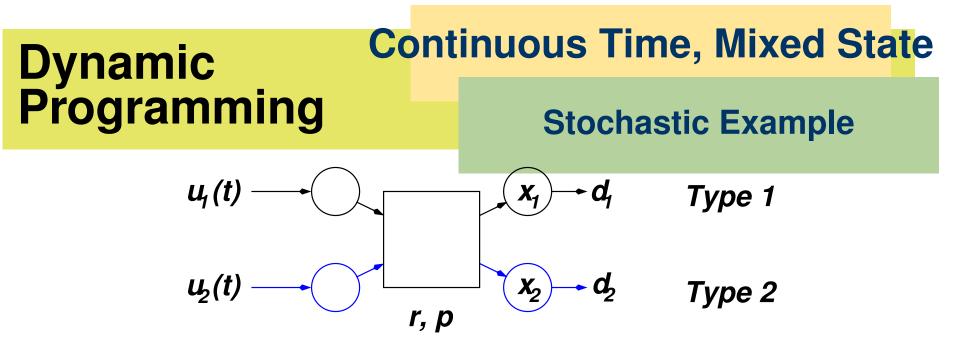
Continuous Time, Mixed State

Stochastic Example

Context: The planning/scheduling hierarchy

- Long term: factory design, capital expansion, etc.
- Medium term: demand planning, staffing, etc.
- Short term:
 - ★ response to short term events
 - * part release and dispatch

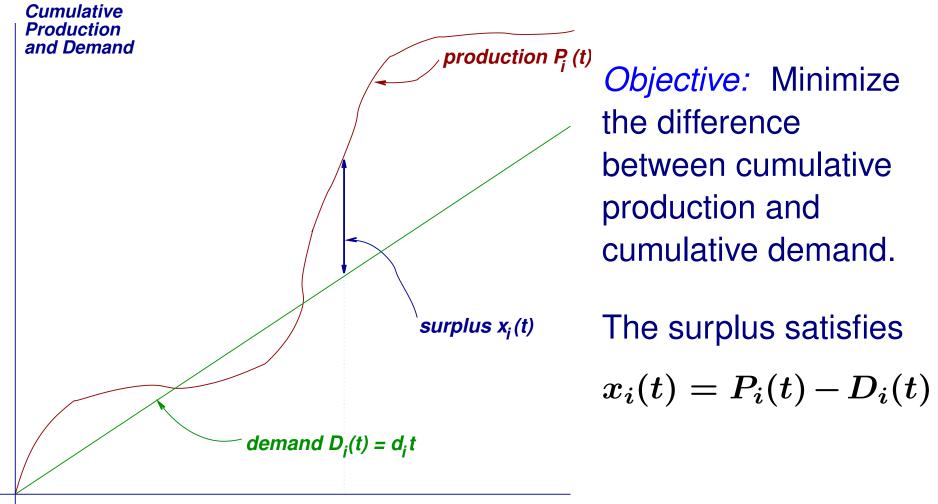
In this problem, we deal with the response to short term events. The factory and the demand are given to us; we must calculate short term production rates; these rates are the targets that release and dispatch must achieve.



- Perfectly flexible machine, two part types. au_i time units required to make Type *i* parts, i = 1, 2.
- Exponential failures and repairs with rates p and r.
- Constant demand rates d_1 , d_2 .
- Instantaneous production rates $u_i(t), i = 1, 2$ *control variables*.
- Downstream surpluses $x_i(t)$.

Continuous Time, Mixed State

Stochastic Example



Copyright ©2007 Stanley B. Gershwin.

Continuous Time, Mixed State

Stochastic Example

Feasibility:

- For the problem to be feasible, it must be possible to make approximately d_iT Type i parts in a long time period of length T, i = 1, 2. (Why "approximately"?)
- The time required to make d_iT parts is $\tau_i d_iT$.
- During this period, the total up time of the machine ie, the time available for production is approximately r/(r+p)T.
- ullet Therefore, we must have $au_1 d_1 T + au_2 d_2 T \leq r/(r+p)T$, or

$$\sum_{i=1}^2 au_i d_i \leq rac{r}{r+p}$$

Continuous Time, Mixed State

Stochastic Example

If this condition is not satisfied, the demand cannot be met. *What will happen to the surplus?*

The feasibility condition is also written

$$\sum_{i=1}^{2} rac{d_i}{\mu_i} \leq rac{r}{r+p}$$

where $\mu_i = 1/ au_i$.

If there were only one part type, this would be

$$d \leq \mu rac{r}{r+p}$$

Look familiar?

Copyright © 2007 Stanley B. Gershwin.

Continuous Time, Mixed State

Stochastic Example

The surplus satisfies

$$x_i(t) = P_i(t) - D_i(t)$$

where

$$P_i(t) = \int_0^t u_i(s) ds; \quad D_i(t) = d_i t$$

Therefore

$$\frac{dx_i(t)}{dt} = u_i(t) - d_i$$

Continuous Time, Mixed State

Stochastic Example

To define the objective more precisely, let there be a function $g(x_1, x_2)$ such that

- $\bullet g$ is convex
- ullet g(0,0)=0
- $ullet \lim_{x_1 o\infty}g(x_1,x_2)=\infty; \quad \lim_{x_1 o-\infty}g(x_1,x_2)=\infty.$
- $\displaystyle extsf{ineq} \lim_{x_2 o\infty} g(x_1,x_2) = \infty;$
- $\lim_{x_1 o -\infty} g(x_1,x_2) = \infty. \ \lim_{x_2 o -\infty} g(x_1,x_2) = \infty.$

Continuous Time, Mixed State

Stochastic Example

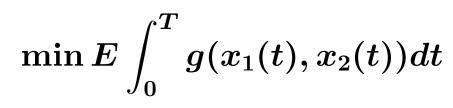
Examples:

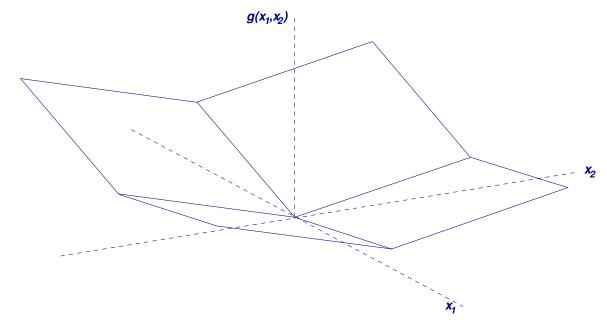
$$\begin{array}{l} \bullet \ g(x_1,x_2) = A_1 x_1^2 + A_2 x_2^2 \\ \bullet \ g(x_1,x_2) = A_1 |x_1| + A_2 |x_2| \\ \bullet \ g(x_1,x_2) = g_1(x_1) + g_2(x_2) \ \text{where} \\ \star \ g_i(x_i) = g_{(i+)} x_i^+ + g_{(i-)} x_i^-, \\ \star \ x_i^+ = \max(x_i,0), \ x_i^- = -\min(x_i,0), \\ \star \ g_{(i+)} > 0, g_{(i-)} > 0. \end{array}$$

Continuous Time, Mixed State

Stochastic Example

Objective:





Continuous Time, Mixed State

Stochastic Example

Constraints:

$$u_1(t)\geq 0; \qquad u_2(t)\geq 0$$

Short-term capacity:

• If the machine is down at time *t*,

$$u_1(t)=u_2(t)=0$$

Continuous Time, Mixed State

Stochastic Example

• Assume the machine is up for a short period $[t, t + \delta t]$. Let δt be small enough so that u_i is constant; that is

$$u_i(s) = u_i(t), s \in [t,t+\delta t]$$

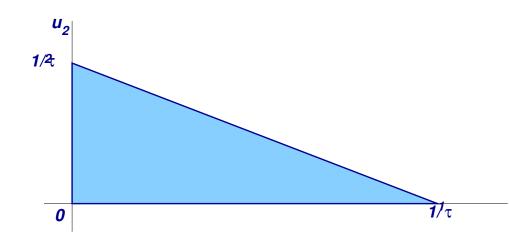
The machine makes $u_i(t)\delta t$ parts of type *i*. The time required to make that number of Type *i* parts is $\tau_i u_i(t)\delta t$.

Therefore

$$\sum_i au_i u_i(t) \delta t \leq \delta t$$

or

$$\sum_i au_i u_i(t) \leq 1$$



Continuous Time, Mixed State

Stochastic Example

Machine state dynamics: Define $\alpha(t)$ to be the repair state of the machine at time t. $\alpha(t) = 1$ means the machine is up; $\alpha(t) = 0$ means the machine is down.

$$prob(\alpha(t + \delta t) = 0 | \alpha(t) = 1) = p\delta t + o(\delta t)$$
$$prob(\alpha(t + \delta t) = 1 | \alpha(t) = 0) = r\delta t + o(\delta t)$$

The constraints may be written

$$\sum_{i} \tau_{i} u_{i}(t) \leq \alpha(t); \qquad u_{i}(t) \geq 0$$

Continuous Time, Mixed State

Stochastic Example

Dynamic programming problem formulation:

$$\min E\int_0^T g(x_1(t),x_2(t))dt$$

subject to:

$$egin{aligned} &rac{dx_i(t)}{dt} = u_i(t) - d_i \ & ext{prob}(lpha(t+\delta t) = 0 | lpha(t) = 1) = p \delta t + o(\delta t) \ & ext{prob}(lpha(t+\delta t) = 1 | lpha(t) = 0) = r \delta t + o(\delta t) \ & ext{} &\sum_i au_i(t) \leq lpha(t); \qquad u_i(t) \geq 0 \ & ext{} &x(0), lpha(0) ext{ specified} \end{aligned}$$

Elements of a DP Problem

- state: x all the information that is available to determine the future evolution of the system.
- *control: u* the actions taken by the decision-maker.
- *objective function:* J the quantity that must be minimized;
- dynamics: the evolution of the state as a function of the control variables and random events.
- constraints: the limitations on the set of allowable controls
- *initial conditions:* the values of the state variables at the start of the time interval over which the problem is described. There are also sometimes *terminal conditions* such as in the network example.

Elements of a DP Solution

- control policy: u(x(t), t). A stationary or time-invariant policy is of the form u(x(t)).
- value function: (also called the cost-to-go function) the value J(x, t) of the objective function when the optimal control policy is applied starting at time t, when the initial state is x(t) = x.

Bellman's
EquationContinuous x, tProblem: $\min_{u(t),0 \le t \le T} \int_0^T g(x(t), u(t))dt + F(x(T))$

such that

$$rac{dx(t)}{dt} = f(x(t), u(t), t)$$
 $x(0)$ specified $h(x(t), u(t)) < 0$

 $x \in R^n, u \in R^m, f \in R^n, h \in R^k$, and g and F are scalars. Data: T, x(0), and the functions f, g, h, and F.

Bellman's Equation

Continuous x, t

Deterministic

The cost-to-go function is

$$\begin{split} J(x,t) &= \min \int_t^T g(x(s),u(s))ds + F(x(T)) \\ J(x(0),0) &= \min \int_0^T g(x(s),u(s))ds + F(x(T)) \\ &= \min_{\substack{u(t), \\ 0 \leq t \leq T}} \left\{ \int_0^{t_1} g(x(t),u(t))dt + \int_{t_1}^T g(x(t),u(t))dt + F(x(T)) \right\}. \end{split}$$

Continuous x, t

Deterministic

$$egin{aligned} &= \min_{\substack{u(t),\ 0\leq t\leq t_1}} \left\{ \int_0^{t_1} g(x(t),u(t))dt + \min_{\substack{u(t),\ t_1\leq t\leq T}} \left[\int_{t_1}^T g(x(t),u(t))dt + F(x(T))
ight]
ight\} \ &= \min_{\substack{u(t),\ 0\leq t\leq t_1}} \left\{ \int_0^{t_1} g(x(t),u(t))dt + J(x(t_1),t_1)
ight\}. \end{aligned}$$

Continuous x, t

Deterministic

where

$$J(x(t_1),t_1) = \min_{u(t),t_1 \leq t \leq T} \int_{t_1}^T g(x(t),u(t)) dt + F(x(T))$$

such that

$$egin{aligned} rac{dx(t)}{dt} &= f(x(t), u(t), t) \ &x(t_1) ext{ specified} \ &h(x(t), u(t)) \leq 0 \end{aligned}$$

Continuous *x*, *t*

Deterministic

Break up
$$[t_1,T]$$
 into $[t_1,t_1+\delta t] \cup [t_1+\delta t,T]$: $J(x(t_1),t_1) = \min_{u(t_1)} \left\{ \int_{t_1}^{t_1+\delta t} g(x(t),u(t)) dt
ight\}$

 $+J(x(t_1+\delta t),t_1+\delta t)\}$

where δt is small enough so that we can approximate x(t) and u(t) with constant $x(t_1)$ and $u(t_1)$, during the interval. Then, approximately,

$$J(x(t_1),t_1) = \min_{u(t_1)} \left\{ g(x(t_1),u(t_1)) \delta t + J(x(t_1+\delta t),t_1+\delta t)
ight\}$$

Continuous x, t

Deterministic

Or,

$$J(x(t_1),t_1) = \min_{u(t_1)} igg\{g(x(t_1),u(t_1))\delta t + J(x(t_1),t_1) +$$

$$rac{\partial J}{\partial x}(x(t_1),t_1)(x(t_1+\delta t)-x(t_1))+rac{\partial J}{\partial t}(x(t_1),t_1)\delta tiggr\}$$

Note that

$$x(t_1+\delta t)=x(t_1)+rac{dx}{dt}\delta t=x(t_1)+f(x(t_1),u(t_1),t_1)\delta t$$

Continuous x, t

Deterministic

Therefore

$$J(x,t_1)=J(x,t_1)$$

$$+ \min_u \left\{ g(x,u)\delta t + rac{\partial J}{\partial x}(x,t_1)f(x,u,t_1)\delta t + rac{\partial J}{\partial t}(x,t_1)\delta t
ight\}$$

where $x = x(t_1); u = u(t_1) = u(x(t_1),t_1).$

Then (dropping the *t* subscript)

$$-rac{\partial J}{\partial t}(x,t)=\min_{u}\left\{g(x,u)+rac{\partial J}{\partial x}(x,t)f(x,u,t)
ight\}$$

Continuous *x*, *t*

Deterministic

This is the *Bellman equation*. It is the counterpart of the recursion equation for the network example.

- If we had a guess of J(x, t) (for all x and t) we could confirm it by performing the minimization.
- If we knew J(x,t) for all x and t, we could determine u by performing the minimization. U could then be written

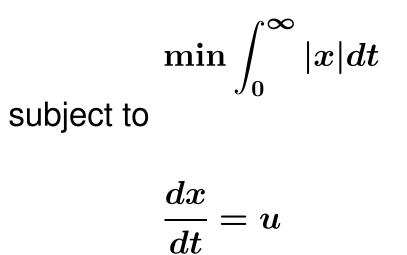
$$u = U\left(x, rac{\partial J}{\partial x}, t
ight).$$

This would be a *feedback law* .

The Bellman equation is usually impossible to solve analytically or numerically. There are some important special cases that can be solved analytically.

Continuous *x*, *t*

Bang-Bang Control



x(0) specified

$$-1 \le u \le 1$$

Continuous *x*, *t*

Example

The Bellman equation is

$$-rac{\partial J}{\partial t}(x,t)=\min_{egin{array}{c}u,\ -1\leq u\leq 1\end{array}}igg\{|x|+rac{\partial J}{\partial x}(x,t)uigg\}.$$

J(x,t) = J(x) is a solution because the time horizon is infinite and t does not appear explicitly in the problem data (ie, g(x) = |x| is not a function of t. Therefore

$$0=\min_{\substack{u,\ -1\leq u\leq 1}}\left\{ert xert+rac{dJ}{dx}(x)u
ight\}.$$

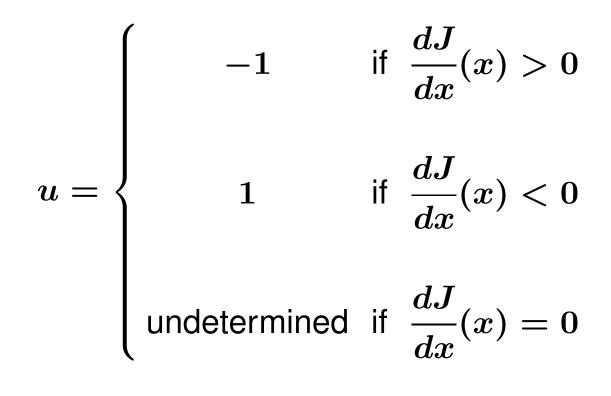
J(0) = 0 because if x(0) = 0 we can choose u(t) = 0 for all t. Then x(t) = 0 for all t and the integral is 0. There is no possible choice of u(t) that will make the integral less than 0, so this is the minimum.

Copyright © 2007 Stanley B. Gershwin.

Continuous *x*, *t*

Example

The minimum is achieved when



Why?

Continuous *x*, *t*

Example

Consider the set of x where dJ/dx(x) < 0. For x in that set, u = 1, so

$$0 = |x| + \frac{dJ}{dx}(x)$$

or

$$rac{dJ}{dx}(x)=-|x|$$

Similarly, if x is such that dJ/dx(x) > 0 and u = -1, $\frac{dJ}{dx}(x) = |x|$

Continuous *x*, *t*

Example

To complete the solution, we must determine where dJ/dx > 0, < 0, and = 0.

We already know that J(0) = 0. We must have J(x) > 0 for all $x \neq 0$ because |x| > 0 so the integral of |x(t)| must be positive.

Since J(x) > J(0) for all $x \neq 0$, we must have

$$rac{dJ}{dx}(x) < 0 ext{ for } x < 0$$
 $rac{dJ}{dx}(x) > 0 ext{ for } x > 0$

Continuous x, t

Example

Therefore

$$\frac{dJ}{dx}(x) >= x$$

SO

and

$$J = \frac{1}{2}x^2$$

$$u = \left\{egin{array}{cccc} 1 & ext{if} & x < 0 \ 0 & ext{if} & x = 0 \ -1 & ext{if} & x > 0 \end{array}
ight.$$

Copyright © 2007 Stanley B. Gershwin.

Bellman's
EquationContinuous $x, t, Discrete \alpha$
Stochastic $J(x(0), \alpha(0), 0) = \min_{u} E \left\{ \int_{0}^{T} g(x(t), u(t)) dt + F(x(T)) \right\}$

such that

$$\frac{dx(t)}{dt} = f(x, \alpha, u, t)$$

prob $[lpha(t+\delta t)=i\mid lpha(t)=j]=\lambda_{ij}\delta t$ for all i,j,i
eq j

x(0), lpha(0) specified

$$h(x(t), lpha(t), u(t)) \leq 0$$

Continuous x, t,Discrete α

Stochastic

Getting the Bellman equation in this case is more complicated because α changes by large amounts when it changes.

Let $H(\alpha)$ be some function of α . We need to calculate

$$ilde{E}H(lpha(t+\delta t))=E\left\{H(lpha(t+\delta t))\mid lpha(t)
ight\}$$

$$=\sum_{j}H(j)$$
prob $\{lpha(t+\delta t)=j\mid lpha(t)\}$

Continuous x, t,Discrete α

Stochastic

$$=\sum_{j
eqlpha(t)}H(j)\lambda_{jlpha(t)}\delta t+H(lpha(t))\left(1-\sum_{j
eqlpha(t)}\lambda_{jlpha(t)}\delta t
ight)+o(\delta t)$$

$$= \sum_{j \neq \alpha(t)} H(j) \lambda_{j\alpha(t)} \delta t + H(\alpha(t)) \left(1 + \lambda_{\alpha(t)\alpha(t)} \delta t \right) + o(\delta t)$$

$$E\left\{H(lpha(t+\delta t))\mid lpha(t)
ight\}=H(lpha(t))+\left[\sum_{j}H(j)\lambda_{jlpha(t)}
ight]\delta t+o(\delta t)$$

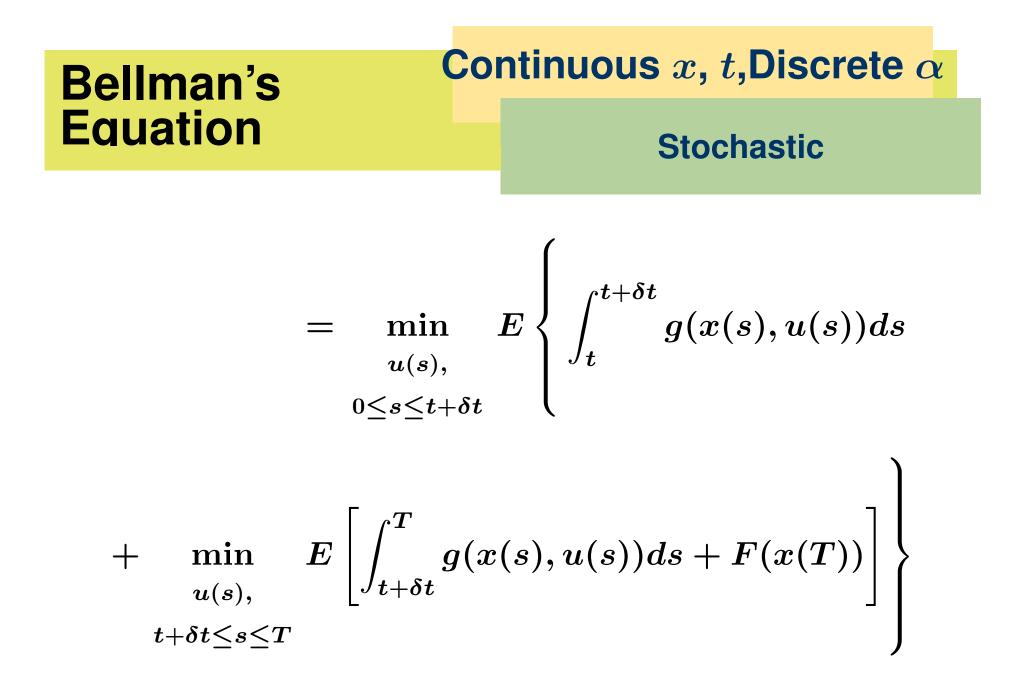
We use this in the derivation of the Bellman equation.

Bellman's

Equation

Bellman's
EquationContinuous $x, t, Discrete \alpha$
Stochastic $J(x(t), \alpha(t), t) = \min E \left\{ \int_{-T}^{T} g(x(s), u(s)) ds + F(x(T)) \right\}$

$$egin{aligned} J(x(t),lpha(t),t) &= &\min_{u(s), } E\left\{\int_t^T g(x(s),u(s))ds + F(x(T))
ight\} \ &t{<}s{<}T \end{aligned}$$



Bellman's
EquationContinuous x, t,Discrete α
Stochastic

$$= \min_{\substack{u(s),\ t\leq s\leq t+\delta t}} ilde{E} igg\{ \int_t^{t+\delta t} g(x(s),u(s)) ds$$

$$+J(x(t+\delta t), lpha(t+\delta t), t+\delta t)$$

1

Next, we expand the second term in a Taylor series about x(t). We leave $\alpha(t + \delta t)$ alone, for now.

1

Continuous x, t,Discrete α

Stochastic

J(x(t), lpha(t), t) =

$$\min_{u(t)} ilde{E}\left\{g(x(t),u(t))\delta t+J(x(t),lpha(t+\delta t),t)+
ight.$$

 $\frac{\partial J}{\partial x}(x(t),\alpha(t+\delta t),t)\delta x(t)+\frac{\partial J}{\partial t}(x(t),\alpha(t+\delta t),t)\delta t\Big\}+o(\delta t),$ where

$$\delta x(t) = x(t + \delta t) - x(t) = f(x(t), \alpha(t), u(t), t)\delta t + o(\delta t)$$

Continuous x, t,Discrete α

Stochastic

Using the expansion of $\tilde{E}H(\alpha(t+\delta t))$,

$$egin{aligned} &J(x(t),lpha(t),t) = \min_{u(t)} \left\{ g(x(t),u(t))\delta t \ &+J(x(t),lpha(t),t) + \sum_j J(x(t),j,t)\lambda_{jlpha(t)}\delta t \ &+rac{\partial J}{\partial x}(x(t),lpha(t),t)\delta x(t) + rac{\partial J}{\partial t}(x(t),lpha(t),t)\delta t
ight\} + o(\delta t) \end{aligned}$$

We can clean up notation by replacing x(t) with x, $\alpha(t)$ with α , and u(t) with u.

Continuous x, t,Discrete α

Stochastic

$$egin{aligned} &J(x,lpha,t) = \ &\min_u \left\{ g(x,u) \delta t + J(x,lpha,t) + \sum_j J(x,j,t) \lambda_{jlpha} \delta t
ight. \ &+ rac{\partial J}{\partial x}(x,lpha,t) \delta x + rac{\partial J}{\partial t}(x,lpha,t) \delta t
ight\} + o(\delta t) \end{aligned}$$

We can subtract $J(x, \alpha, t)$ from both sides and use the expression for δx to get ...

Bellman's
EquationContinuous x, t,Discrete α
Stochastic

$$egin{aligned} 0 &= \min_u \left\{ g(x,u) \delta t + \sum_j J(x,j,t) \lambda_{jlpha} \delta t
ight. \ &+ rac{\partial J}{\partial x}(x,lpha,t) f(x,lpha,u,t) \delta t + rac{\partial J}{\partial t}(x,lpha,t) \delta t
ight\} + o(\delta t) \end{aligned}$$

or,

Bellman's Conti Equation

Continuous x, t,Discrete α

Stochastic

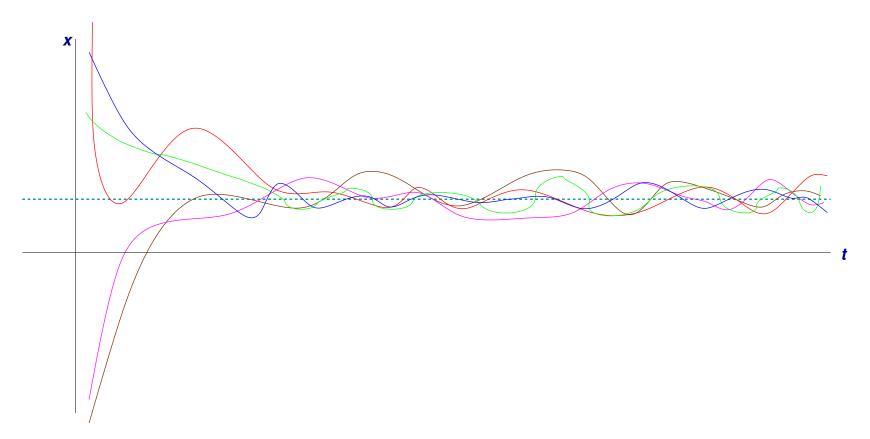
$$-rac{\partial J}{\partial t}(x,lpha,t)=\sum_{j}J(x,j,t)\lambda_{jlpha}+$$

$$\min_{u}\left\{g(x,u)+rac{\partial J}{\partial x}(x,lpha,t)f(x,lpha,u,t)
ight\}$$

- Bad news: usually impossible to solve;
- Good news: insight.

Bellman's Continuous x, t, Discrete α Equation Stochastic

An approximation: when T is large and f is not a function of t, typical trajectories look like this:



Continuous x, t,Discrete α

Stochastic

That is, in the long run, x approaches a steady-state probability distribution. Let J^* be the expected value of g(x, u), where u is the optimal control.

Suppose we started the problem with x(0) a random variable whose probability distribution is the steady-state distribution. Then, for large T,

$$egin{aligned} EJ &= \min_u E\left\{\int_0^T g(x(t),u(t))dt + F(x(T))
ight\} \ &pprox J^*T \end{aligned}$$

Bellman's
EquationContinuous x, t,Discrete α
Stochastic

For x(0) and lpha(0) specified

 $J(x(0), \alpha(0), 0) \approx J^*T + W(x(0), \alpha(0))$ or, more generally, for x(t) = x and $\alpha(t) = \alpha$ specified, $J(x, \alpha, t) \approx J^*(T - t) + W(x, \alpha)$

Single machine, multiple part types. x, u, d are N-dimensional vectors. $\min E \int_0^T g(x(t)) dt$

subject to:

$$egin{aligned} &rac{dx_i(t)}{dt} = u_i(t) - d_i, &i = 1, ..., N \ & ext{prob}(lpha(t+\delta t) = 0 | lpha(t) = 1) = p \delta t + o(\delta t) \ & ext{prob}(lpha(t+\delta t) = 1 | lpha(t) = 0) = r \delta t + o(\delta t) \ & ext{} &\sum_i au_i(t) \leq lpha(t); & u_i(t) \geq 0 \ & ext{} &x(0), lpha(0) ext{ specified} \end{aligned}$$

Define $\Omega(\alpha) = \{u | \sum_i \tau_i u_i \leq \alpha\}$. Then, for $\alpha = 0, 1$,

$$-rac{\partial J}{\partial t}(x,lpha,t)=\sum_j J(x,j,t)\lambda_{jlpha}+$$

$$\min_{u\in\Omega(lpha)}\left\{g(x)+rac{\partial J}{\partial x}(x,lpha,t)(u-d)
ight\}$$

Approximating J with $J^*(T-t) + W(x, \alpha)$ gives:

$$J^* = \sum_j (J^*(T-t) + W(x,j))\lambda_{jlpha} +$$

$$\min_{u\in\Omega(lpha)}\left\{g(x)+rac{\partial W}{\partial x}(x,lpha,t)(u-d)
ight\}$$

Recall that

$$\sum_j \lambda_{jlpha} = 0...$$

SO

$$J^* = \sum_j W(x,j) \lambda_{jlpha} +$$

$$\min_{u\in\Omega(lpha)}\left\{g(x)+rac{\partial W}{\partial x}(x,lpha,t)(u-d)
ight\}$$

for lpha=0,1

This is actually two equations, one for $\alpha = 0$, one for $\alpha = 1$.

$$J^* = g(x) + W(x,1)r - W(x,0)r - rac{\partial W}{\partial x}(x,0)d,$$
 for $lpha = 0,$

$$J^* = g(x) + W(x,0)p - W(x,1)p + \min_{u \in \Omega(1)} \left[rac{\partial W}{\partial x}(x,1)(u-d)
ight]$$
 for $lpha = 1.$

Single-part-type case

Technically, not flexible!

Now, \boldsymbol{x} and \boldsymbol{u} are scalars, and

$$\Omega(1)=[0,1/ au]=[0,\mu]$$

$$J^* = g(x) + W(x,1)r - W(x,0)r - rac{dW}{dx}(x,0)d,$$
 for $lpha = 0,$

$$egin{aligned} J^* &= g(x) + W(x,0)p - W(x,1)p + \min_{0 \leq u \leq \mu} \left[rac{dW}{dx}(x,1)(u-d)
ight] \ & ext{ for } lpha &= 1. \end{aligned}$$

Copyright ©2007 Stanley B. Gershwin.

Single-part-type case

See book, Sections 2.6.2 and 9.3; see Probability slides # 91–120.

When $\alpha = 0, u = 0$.

When $\alpha = 1$,

• if
$$\frac{dW}{dx} < 0$$
, $u = \mu$,
• if $\frac{dW}{dx} = 0$, u unspecified,
• if $\frac{dW}{dx} > 0$, $u = 0$.

Single-part-type case

 $W(x, \alpha)$ has been shown to be convex in x. If the minimum of W(x, 1) occurs at x = Z and W(x, 1) is differentiable for all x, then

$$ullet rac{dW}{dx} < 0 \leftrightarrow x < Z$$
 $ullet rac{dW}{dx} = 0 \leftrightarrow x = Z$
 $ullet rac{dW}{dx} > 0 \leftrightarrow x > Z$

Therefore,

- $\bullet \text{ if } x < Z, \ \ u = \mu, \\$
- if x = Z, u unspecified,
- $\bullet \text{ if } x>Z, \ \ u=0.$

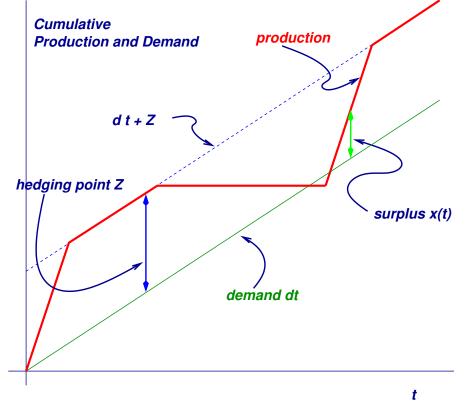
Surplus, or inventory/backlog:

Production policy: Choose *Z* (the *hedging point*) Then,

• if $\alpha = 1$, * if x < Z, $u = \mu$, * if x = Z, u = d, * if x > Z, u = 0; • if $\alpha = 0$, * u = 0.

Single-part-type case

$$\frac{dx(t)}{dt} = u(t) - d$$



How do we choose Z?

Copyright © 2007 Stanley B. Gershwin.

Single-part-type case

Determination of Z

$$J^* = Eg(x) = g(Z)P(Z,1) + \int_{-\infty}^{Z} g(x) \left[f(x,0) + f(x,1)\right] dx$$

in which P and f form the steady-state probability distribution of x. We choose Z to minimize J^* . P and f are given by

$$f(x,0) = Ae^{bx}$$

$$f(x,1) = A \frac{d}{\mu - d} e^{bx}$$

$$P(Z,1) = A \frac{d}{p} e^{bZ}$$

Single-part-type case

Determination of Z

where

$$b = rac{r}{d} - rac{p}{\mu - d}$$

and A is chosen so that

$$\int_{-\infty}^{Z} \left[f(x,0) + f(x,1) \right] dx + P(Z,1) = 1$$

After some manipulation,

$$A = \left[rac{bp(\mu-d)}{db(\mu-d)+\mu p}
ight] e^{-bZ}$$

and

$$P(Z,1)=rac{db(\mu-d)}{db(\mu-d)+\mu p}$$

Copyright © 2007 Stanley B. Gershwin.

Single-part-type case

Determination of Z

Since
$$g(x)=g_+x^++g_-x^-$$
,

• if $Z \leq 0$, then

$$J^* = -g_- ZP(Z,1) - \int_{-\infty}^Z g_- x \left[f(x,0) + f(x,1) \right] dx;$$

• if Z > 0,

$$egin{aligned} J^* &= g_+ Z P(Z,1) - \int_{-\infty}^0 g_- x \left[f(x,0) + f(x,1)
ight] dx \ &+ \int_0^Z g_+ x \left[f(x,0) + f(x,1)
ight] dx. \end{aligned}$$

Copyright © 2007 Stanley B. Gershwin.

Single-part-type case

Determination of Z

To minimize J^* :

$$ullet \ ext{ if } g_+ - Kb(g_+ + g_-) < 0, Z = rac{\ln \left(Kb(1 + rac{g_-}{g_+})
ight)}{b}.$$

• if
$$g_+ - Kb(g_+ + g_-) \ge 0, Z = 0$$

where K =

$$rac{\mu p}{b(\mu bd-d^2b+\mu p)}=rac{\mu p}{b(r+p)(\mu-d)}=rac{1}{b}\left[rac{\mu p}{db(\mu-d)+\mu p}
ight]$$

Z is a function of d, μ, r, p, g_+, g_- .

Single-part-type case

Determination of Z

That is, we choose Z such that

$$e^{bZ}=\min\left\{1,Kb\left(rac{g_++g_-}{g_+}
ight)
ight\}$$

or

$$e^{-bZ}=\max\left\{1,rac{1}{Kb}\left(rac{g_+}{g_++g_-}
ight)
ight\}$$

Single-part-type case

Determination of Z

 $\operatorname{prob}(x \le 0) = \int_{-\infty}^{0} (f(x,0) + f(x,1)) dx$ $=A\left(1+rac{d}{\mu-d}
ight)\int_{-\infty}^{u}e^{bx}dx$ $=A\left(1+\frac{d}{\mu-d}\right)\frac{1}{b}=A\frac{\mu}{b(\mu-d)}$ $= \left| \frac{bp(\mu - d)}{db(\mu - d) + \mu p} \right| e^{-bZ} \frac{\mu}{b(\mu - d)}$ $= \left| \frac{\mu p}{db(\mu - d) \perp \mu p} \right| e^{-bZ}$

Copyright © 2007 Stanley B. Gershwin.

Single-part-type case

Determination of Z

Or,

$$\mathsf{prob}(x \leq 0) = \left[rac{\mu p}{db(\mu-d)+\mu p}
ight] \max\left\{1,rac{1}{Kb}\left(rac{g_+}{g_++g_-}
ight)
ight\}$$

It can be shown that

$$Kb = rac{\mu p}{\mu p + bd(\mu - d)}$$

Therefore

$$ext{prob}(x \leq 0) = Kb \max\left\{1, rac{1}{Kb}\left(rac{g_+}{g_++g_-}
ight)
ight\}$$
 $= \max\left\{rac{\mu p}{\mu p + bd(\mu - d)}, \ rac{g_+}{g_++g_-}
ight\}$

Single-part-type case

Determination of Z

That is,

• if
$$\displaystyle rac{\mu p}{\mu p + bd(\mu - d)} > \displaystyle rac{g_+}{g_+ + g_-},$$
 then $Z = 0$ and $\displaystyle ext{prob}(x \leq 0) = \displaystyle rac{\mu p}{\mu p + bd(\mu - d)};$

• if
$$rac{\mu p}{\mu p+bd(\mu-d)} < rac{g_+}{g_++g_-},$$
 then $Z>0$ and $prob(x\leq 0)=rac{g_+}{g_++g_-}.$

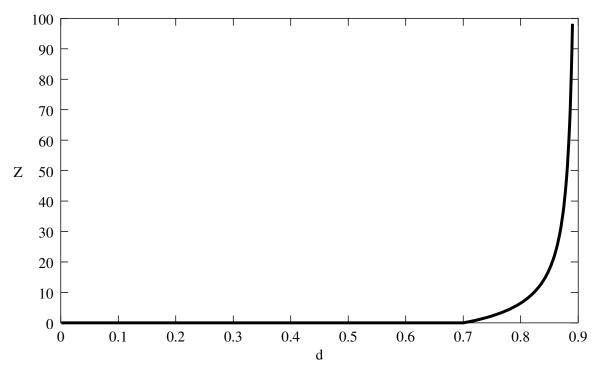
This looks a lot like the solution of the "newsboy problem."

Copyright © 2007 Stanley B. Gershwin.

Single-part-type case

Z vs. d

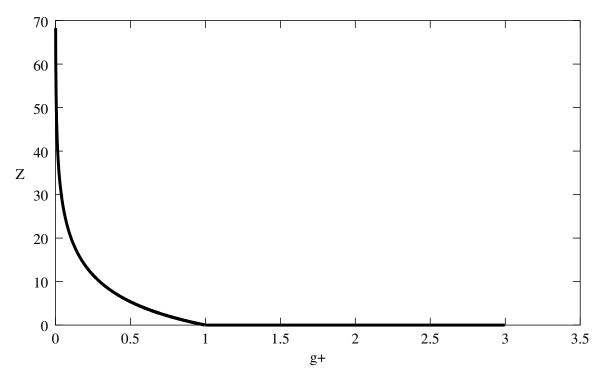
Base values: $g_+ = 1, g_- = 10 \ d = .7, \mu = 1., r = .09,$ p = .01.



Single-part-type case

Z vs. g_+

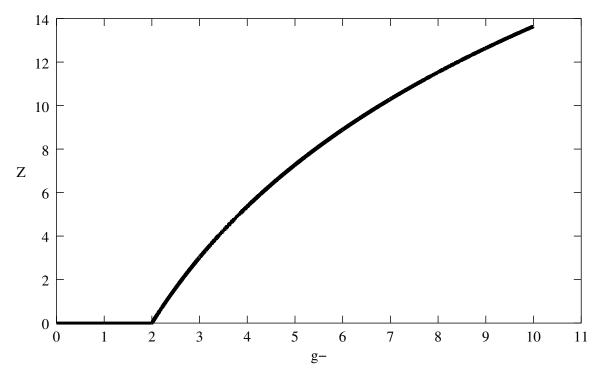
Base values: $g_+ = 1, g_- = 10 \ d = .7, \mu = 1., r = .09, p = .01.$



Single-part-type case

Z vs. g_-

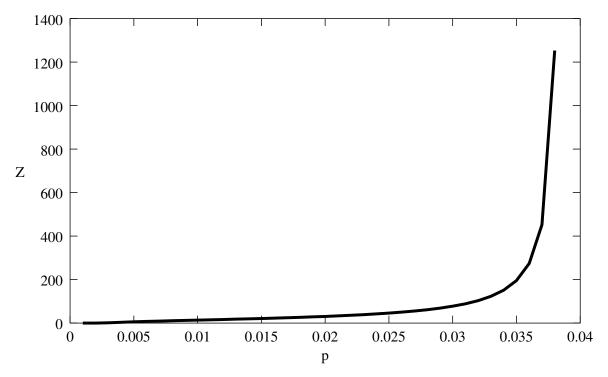
Base values: $g_+ = 1, g_- = 10 \ d = .7, \mu = 1., r = .09,$ p = .01.

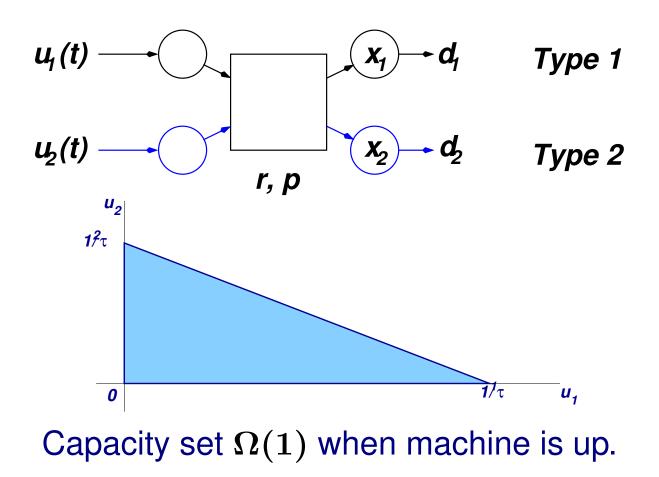


Single-part-type case

Z vs. p

Base values: $g_+ = 1, g_- = 10 \ d = .7, \mu = 1., r = .09,$ p = .01.





Two-part-type case

Two-part-type case

We must find u(x, lpha) to satisfy

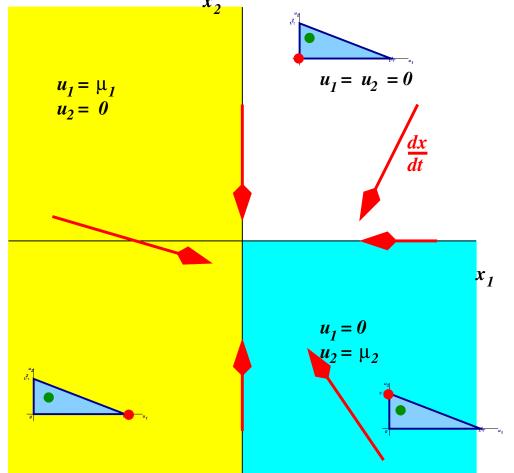
$$\min_{u\in\Omega(lpha)}\left\{rac{\partial W}{\partial x}(x,lpha,t)
ight\}u$$

Partial solution of LP:

- If $\partial W/\partial x_1>0$ and $\partial W/\partial x_2>0$, $u_1=u_2=0$.
- $\bullet ext{ If } \partial W/\partial x_1 < \partial W/\partial x_2 < 0, \, u_1 = \mu_1, u_2 = 0.$
- \bullet If $\partial W/\partial x_2 < \partial W/\partial x_1 < 0,\, u_2 = \mu_2, u_1 = 0.$

Problem: no complete analytical solution available.

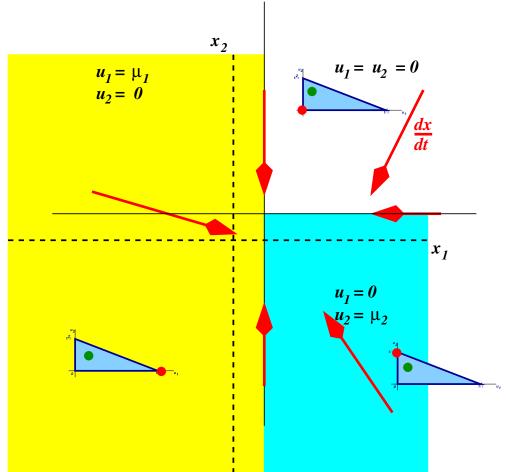
Case: Exact solution if $Z = (Z_1, Z_2) = 0$



Two-part-type case

Copyright ©2007 Stanley B. Gershwin.

Case: Approximate solution if Z > 0

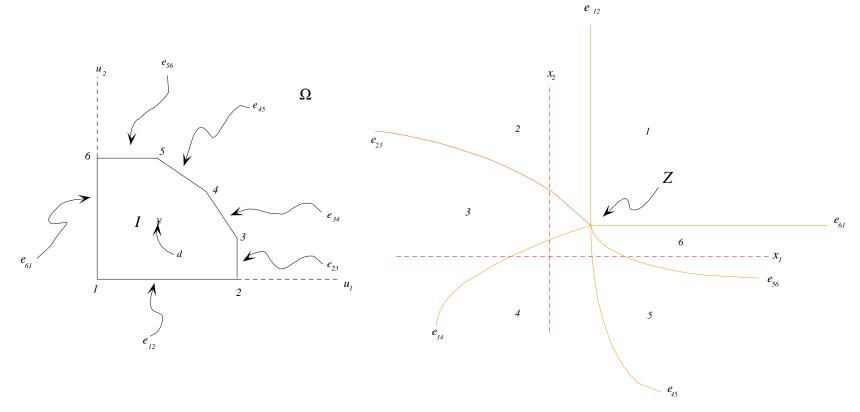


Two-part-type case

Copyright © 2007 Stanley B. Gershwin.

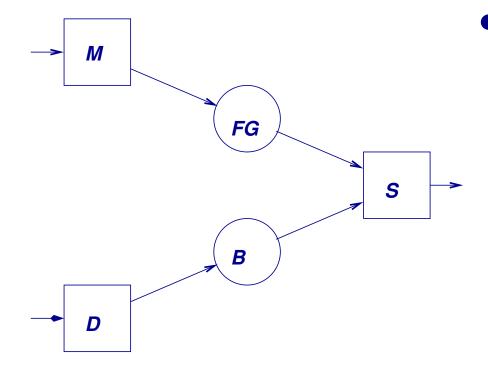
Two-part-type case

Two parts, multiple machines without buffers:



Two-part-type case

- Proposed approximate solution for multiple-part, single machine system:
 - * Rank order the part types, and bring them to their hedging points in that order.



Single-part-type case

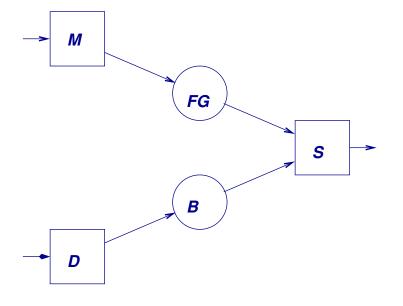
Surplus and tokens

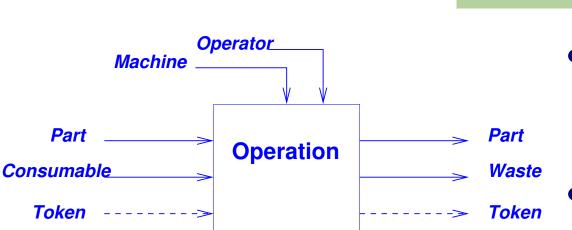
• Operating Machine M according to the hedging point policy is equivalent to operating this assembly system according to a finite buffer policy.

- *D* is a *demand generator* .
 - \star Whenever a demand arrives, D sends a token to B.
- \bullet *S* is a synchronization machine.
 - $\star S$ is perfectly reliable and infinitely fast.
- FG is a finite finished goods buffer.
- B is an infinite backlog buffer.

Single-part-type case

Surplus and tokens



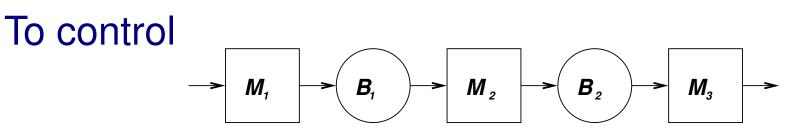


Single-part-type case

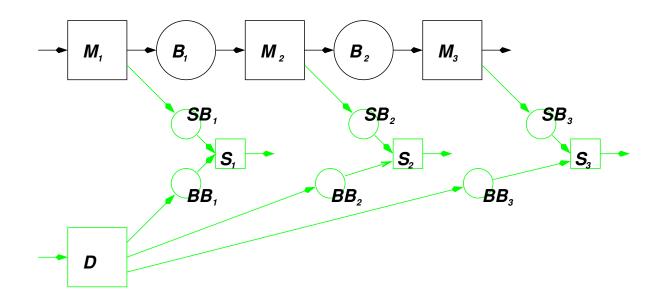
Material/token policies

- An operation cannot take place unless there is a token available.
- Tokens *authorize* production.
- These policies can often be implemented *either* with finite buffer space, or a finite number of tokens. Mixtures are also possible.
- Buffer space could be shelf space, or floor space indicated with paint or tape.

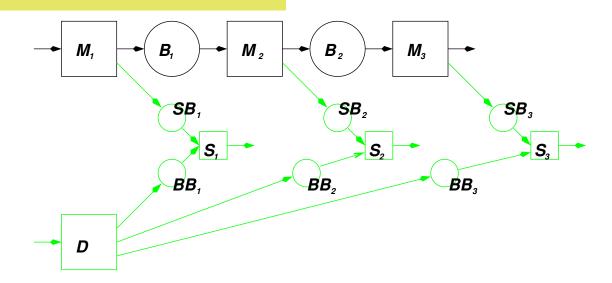
Proposed policy



add an information flow system:



Proposed policy



- B_i are *material* buffers and are finite.
- SB_i are *surplus* buffers and are finite.
- BB_i are *backlog* buffers and are infinite.
- The sizes of B_i and SB_i are control parameters.
- Problem: predicting the performance of this system.

Copyright © 2007 Stanley B. Gershwin.

Three Views of Scheduling

Multi-stage systems

Three kinds of scheduling policies, which are sometimes exactly the same.

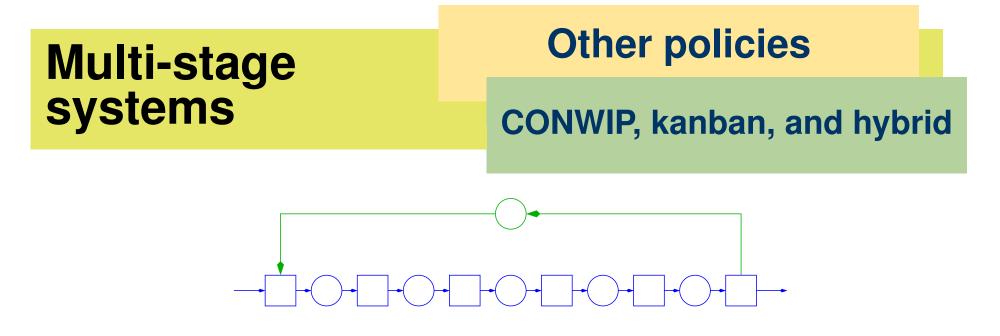
- *Surplus-based:* make decisions based on how much production exceed demand.
- *Time-based:* make decisions based on how early or late a product is.
- *Token-based:* make decisions based on presence or absence of tokens.

Cumulative **Production** and Demand production P(t) earliness surplus/backlog x(t) demand D(t) t

Objective of Scheduling

Surplus and time

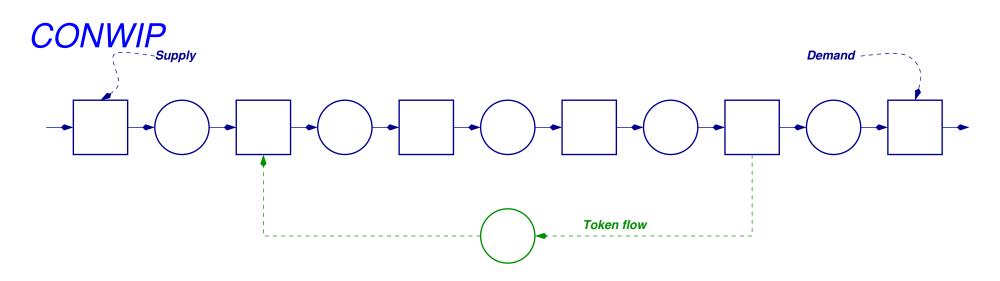
- Objective is to keep cumulative production close to cumulative demand.
- Surplus-based policies look at vertical differences between the graphs.
- Time-based policies look at the horizontal differences.



- CONWIP: finite population, infinite buffers
- *kanban:* infinite population, finite buffers
- *hybrid:* finite population, finite buffers

Other policies

CONWIP, kanban, and hybrid

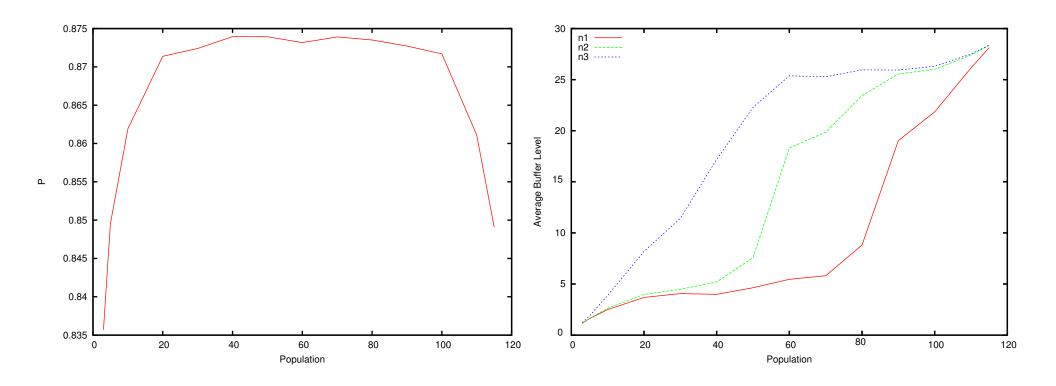


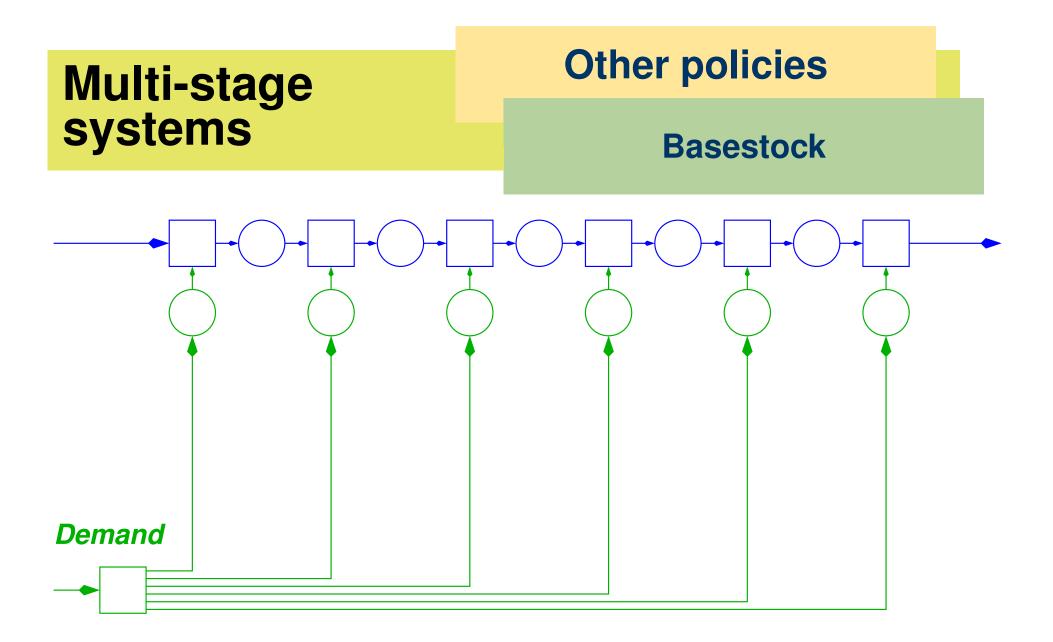
Demand is less than capacity.

How does the number of tokens affect performance (production rate, inventory)?

Other policies

CONWIP, kanban, and hybrid





Multi-stage Other policies systems FIFO

- First-In, First Out.
- Simple conceptually, but you have to keep track of arrival times.
- Leaves out much important information:
 - due date, value of part, current surplus/backlog state, etc.

Other policies

EDD

• Earliest due date.

- Easy to implement.
- Does not consider work remaining on the item, value of the item, etc..

Other policies

SRPT

- Shortest Remaining Processing Time
- Whenever there is a choice of parts, load the one with least remaining work before it is finished.
- Variations: include waiting time with the work time. Use expected time if it is random.

Other policies

Critical ratio

- Widely used, but many variations. One version:
 - $\star \text{ Define CR} = \frac{\text{Processing time remaining until completion}}{\text{Due date Current time}}$
 - * Choose the job with the highest ratio (provided it is positive).
 - ★ If a job is late, the ratio will be negative, or the denominator will be zero, and that job should be given highest priority.
 - ★ If there is more than one late job, schedule the late jobs in SRPT order.

Other policies

Least Slack

- This policy considers a part's due date.
- Define *slack* = due date remaining work time
- When there is a choice, select the part with the least slack.
- Variations involve different ways of estimating remaining time.

Other policies

Drum-Buffer-Rope

- Due to Eli Goldratt.
- Based on the idea that every system has a bottleneck.
- *Drum:* the common production rate that the system operates at, which is the rate of flow of the bottleneck.
- *Buffer:* DBR establishes a CONWIP policy between the entrance of the system and the bottleneck. The buffer is the CONWIP population.
- *Rope:* the limit on the difference in production between different stages in the system.
- But: What if bottleneck is not well-defined?

Conclusions

- Many policies and approaches.
- No simple statement telling which is better.
- Policies are not all well-defined in the literature or in practice.

• My opinion:

- * This is because policies are not *derived* from first principles.
- * Instead, they are tested and compared.
- ★ Currently, we have little intuition to guide policy development and choice.

MIT OpenCourseWare http://ocw.mit.edu

2.852 Manufacturing Systems Analysis Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.