MIT 2.852
 Manufacturing Systems Analysis
 Lectures 15-16: Assembly/Disassembly Systems

Stanley B. Gershwin
http://web.mit.edu/manuf-sys
Massachusetts Institute of Technology

Spring, 2010

Assembly-Disassembly Systems

Assembly System

Assembly-Disassembly Systems

Assembly-Disassembly System with a Loop

Assembly-Disassembly Systems

A-D System without Loops

Assembly-Disassembly Systems

Disruption Propagation in an A-D System without Loops

Assembly-Disassembly Systems
 Models and Analysis

An assembly/disassembly system is a generalization of a transfer line:

- Each machine may have 0 , 1 , or more than one buffer upstream.
- Each machine may have 0,1 , or more than one buffer downstream.
- Each buffer has exactly one machine upstream and one machine downstream.
- Discrete material systems: when a machine does an operation, it removes one part from each upstream buffer and inserts one part into each downstream buffer.
- Continuous material systems: when machine M_{i} operates during [$t, t+\delta t$], it removes $\mu_{i} \delta t$ from each upstream buffer and inserts $\mu_{i} \delta t$ into each downstream buffer.
- A machine is starved if any of its upstream buffers is empty. It is blocked if any of its downstream buffers is full.

Assembly-Disassembly Systems Models and Analysis

- A/D systems can be modeled similarly to lines:
- discrete material, discrete time, deterministic processing time, geometric repair and failure times;
- discrete material, continuous time, exponential processing, repair, and failure times;
- continuous continuous time, deterministic processing rate, exponential repair and failure times;
- other models not yet discussed in class.
- A/D systems without loops can be analyzed similarly to lines by decomposition.
- A/D systems with loops can be analyzed by decomposition, but there are additional complexities.

Assembly-Disassembly Systems Models and Analysis

- Systems with loops are not ergodic. That is, the steady-state distribution is a function of the initial conditions.
- Example: if the system below has K pallets at time 0 , it will have K pallets for all $t \geq 0$. Therefore, the probability distribution is a function of K.

- This applies to more general systems with loops, such the example on Slide 3.

Assembly-Disassembly Systems

Models and Analysis

- In general,

$$
\mathbf{p}(s \mid s(0))=\lim _{t \rightarrow \infty} \operatorname{prob}\{\text { state of the system at time } t=s \mid
$$

$$
\text { state of the system at time } 0=s(0)\}
$$

- Consequently, the performance measures depend on the initial state of the system:
- The production rate of Machine M_{i}, in parts per time unit, is

$$
\begin{aligned}
& E_{i}(s(0))=\operatorname{prob}\left[\alpha_{i}=1 \text { and }\left(n_{b}>0 \forall b \in U(i)\right)\right. \text { and } \\
& \left.\qquad\left(n_{b}<N_{b} \forall b \in D(i)\right) \mid s(0)\right] .
\end{aligned}
$$

- The average level of Buffer b is

$$
\begin{array}{cc}
\bar{n}_{b}(s(0))=\sum_{s} n_{b} \text { prob }(s \mid s(0)) \\
9 / 41 & \text { Copyright (C)2010 Stanley B. Gershwin. }
\end{array}
$$

Assembly-Disassembly Systems

Decomposition

Part of Original Network

Assembly-Disassembly Systems

Decomposition

Part of Decomposition

Numerical examples

Eight-Machine Systems

Deterministic processing time model

Numerical examples

Eight-Machine Systems

Numerical examples

Eight-Machine Systems

Case 2:
Same as Case
1 except
$p_{7}=.2$

Numerical examples

Eight-Machine Systems

Case 3:
Same as Case
1 except
$p_{1}=.2$

Numerical examples

Eight-Machine Systems

Case 4:
Same as Case
1 except
$p_{3}=.2$

Numerical Examples Alternate Assembly Line Designs

A product is made of three subassemblies (blue, yellow, and red). Each subassembly can be assembled independently of the others. We consider four possible production system structures.

Bottleneck

Machine 6 (the first machine of the yellow process) is the bottleneck - the slowest operation of all.

Numerical Examples

Alternate Assembly Line Designs

Numerical Examples

Alternate Assembly Line Designs

Now the bottleneck is Machine 5, the last operation of the blue process.

Numerical Examples

Alternate Assembly Line Designs

Equivalence

Simple models

Consider a three-machine transfer line and a three-machine assembly system. Both are perfectly reliable ($p_{i}=0$) exponentially processing time systems.

Equivalence Assembly System State Space

Equivalence

Transfer Line State Space

Equivalence

Unlabeled State Space

- The transition graphs of the two systems are the same except for the labels of the states.
- Therefore, the steady-state probability distributions of the two systems are the same, except for the labels of the states.
- The relationship between the labels of the states is:

$$
\left(n_{1}^{A}, n_{2}^{A}\right) \Longleftrightarrow\left(n_{1}^{T}, N_{2}-n_{2}^{T}\right)
$$

- Therefore, in steady state,

$$
\operatorname{prob}\left(n_{1}^{A}, n_{2}^{A}\right)=\operatorname{prob}\left(n_{1}^{T}, N_{2}-n_{2}^{T}\right)
$$

Equivalence

Assembly System Production Rate

Production rate $=$ rate of flow of material into M_{1}

Equivalence

Transfer Line Production Rate

Production rate $=$ rate of flow of material into M_{1}

$$
=\mu_{1} \sum_{n_{1}=0}^{1} \sum_{n_{2}=0}^{3} \mathbf{p}\left(n_{1}, n_{2}\right)
$$

Equivalence
 Equal Production Rates

Therefore

$$
P^{A}=P^{T}
$$

Equivalence

Assembly System \bar{n}_{1}

Equivalence

Transfer Line \bar{n}_{1}

$$
\bar{n}_{1}=\sum_{n_{1}=0}^{2} \sum_{n_{2}=0}^{3} n_{1} \mathbf{p}\left(n_{1}, n_{2}\right)=\sum_{n_{1}=0}^{2} n_{1}\left[\sum_{n_{2}=0}^{3} \mathbf{p}\left(n_{1}, n_{2}\right)\right]
$$

$$
N_{1}=2 \quad N_{2}=3
$$

Equivalence Equal \bar{n}_{1}

Therefore

$$
\bar{n}_{1}^{A}=\bar{n}_{1}^{T}
$$

Equivalence

 Assembly System \bar{n}_{2}

Equivalence

Transfer Line \bar{n}_{2}

$$
\bar{n}_{2}=\sum_{n_{1}=0}^{2} \sum_{n_{2}=0}^{3} n_{2} \mathbf{p}\left(n_{1}, n_{2}\right)=\sum_{n_{2}=0}^{3} n_{2}\left[\sum_{n_{1}=0}^{2} \mathbf{p}\left(n_{1}, n_{2}\right)\right]
$$

Equivalence
 Complementary \bar{n}_{1}

Therefore

$$
\bar{n}_{2}^{A}=N_{2}-\bar{n}_{2}^{T}
$$

Equivalence

Theorem

- Notation: Let j be a buffer. Then the machine upstream of the buffer is $u(j)$ and the machine downstream of the buffer is $d(j)$.
- Theorem:
- Assume
- Z and Z^{\prime} are two exponential A/D networks with the same number of machines and buffers. Corresponding machines and buffers have the same parameters; that is, $\mu_{i}^{\prime}=\mu_{i}, i=1, \ldots, k_{M}$ and $N_{b}^{\prime}=N_{b}, b=1, \ldots, k_{B}$.
- There is a subset of buffers Ω such that for $j \notin \Omega, u^{\prime}(j)=u(j)$ and $d^{\prime}(j)=d(j)$; and for $j \in \Omega, u^{\prime}(j)=d(j)$ and $d^{\prime}(j)=u(j)$. That is, there is a set of buffers such that the direction of flow is reversed in the two networks.
- Then, the transition equations for network Z^{\prime} are the same as those of Z, except that the buffer levels in Ω are replaced by the amounts of space in those buffers.

Equivalence
 Theorem

- That is, the transition (or balance) equations of Z^{\prime} can be written by transforming those of Z.
- In the Z equations, replace n_{j} by $N_{j}-n_{j}$ for all $j \in \Omega$.

Equivalence

Theorem

Corollary:

- Assume:
- The initial states $s(0)$ and $s^{\prime}(0)$ are related as follows: $n_{j}^{\prime}(0)=n_{j}(0)$ for $j \notin \Omega$, and $n_{j}^{\prime}(0)=N_{j}-n_{j}(0)$ for $j \in \Omega$.
- Then

$$
\begin{gathered}
P^{\prime}\left(n^{\prime}(0)\right)=P(n(0)) \\
\bar{n}_{b}^{\prime}\left(n^{\prime}(0)\right)=\bar{n}_{b}(n(0)), \text { for } j \notin \Omega \\
\bar{n}_{b}^{\prime}\left(n^{\prime}(0)\right)=N_{b}-\bar{n}_{b}(n(0)), \text { for } j \in \Omega
\end{gathered}
$$

Equivalence
 Theorem

Corollary: That is,

- the production rates of the two systems are the same,
- the average levels of all the buffers in the systems whose direction of flow has not been changed are the same,
- the average levels of all the buffers in the systems whose direction of flow has been changed are complementary; the average number of parts in one is equal to the average amount of space in the other.

Equivalence

Equivalence class of three-machine systems

Equivalence

Equivalence classes of four-machine systems

Representative members

Equivalence

Example of equivalent loops

(a) A Fork/ Join Network

(b) A Closed Network

Equivalence
 To come

- Loops and invariants
- Two-machine loops
- Instability of A/D systems with infinite buffers

MIT OpenCourseWare
http://ocw.mit.edu

2.852 Manufacturing Systems Analysis

Spring 2010

For information about citing these materials or our Terms of Use,visit:http://ocw.mit.edu/terms.

