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Exponentially Weighted Moving Average:
(EWMA)

A=rx.+({1-r)A_ Recursive EWMA

o e T

o (1)
GA:J n \2—r/

for large t

UCL,LCL =X * 30,
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SO WHAT?

e The variance will be less than with xbar,

oy |[ 1) (1)

W=7\ = 7

e Nn=1 case Is valid

 If r=1 we have “unfiltered” data
— Run data stays run data
— Sequential averages remain

o If r<<1 we get long weighting and long delays
— “Stronger” filter; longer response time
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Mean Shift Sensitivity
EWMA and Xbar comparison
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Effect of r
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Small Mean Shifts

 What if Ax i1s small with respect to o;, ?
e But it is “persistent”

 How could we detect?
— ARL for xbar would be too large

I I I H N
II Manufacturing



Another Approach: Cumulative Sums

 Add up deviations from mean
— A Discrete Time Integrator

Cj :ZJ:(Xi _;)

e Since E{x-x}=0 this sum should stay near
zero when in control

* Any bias (mean shift) in x will show as a trend
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Mean Shift Sensitivity: CUSUM
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An Alternative
e Define the Normalized Statistic

X — UL, Which has an
/. =
| . expected mean of
. 0 and variance of 1
 And the CUSUM statistic
Zt:Z- Which has an
—~ expected mean of
S; = ‘/7[ 0 and variance of 1

Chart with Centerline =0 and Limits = £3
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Tabular CUSUM

e Create Threshold Variables:

Ci+ = max:O,Xi — (,Llo + K) + Ci_1+: Accumulates
~ ) __ deviations
Ci = max_O,(,uO — K)— X + Ci—l | from the

mean

K= threshold or slack value for
accumulation

< _ |AH

5 Au =mean shift to detect

typical

H . alarm level (typically 50)
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Threshold Plot
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Univariate vs. y2 Chart

Joint control region for X; and X,
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Multivariate Chart with
No Prior Statistics; T2

 |f we must use datatoget X and S
« Define a new statistic, Hotelling T2

T° =n(z—-z)' S~ (z - Z)

« Where X is the vector of the averages for
each variable over all measurements

« S Is the matrix of sample covariance over all
data
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Similarity of T2 and t?

m) TP=nz-2'5'z-2

t=—_°L

VS. — 8/\/5
2 _ n(zZ — p)?

32
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Yield — Negative Binomial Model

 Gamma probabillity distribution for (D)

— proposed by Ogabe, Nagata, and Shimada;
popularized by Stapper

—1 —D
f(D) = Py
T F (Oé ) /8 (87 Image removed due to copyright restrictions. Please see

Fig. 5.4 in May, Gary S., and J. Costas Spanos.

Fundamentals of Semiconductor Manufacturing and
Process Control. Hoboken, NJ: Wiley-Interscience, 2006.

e o IS a “cluster” parameter

— High o means low variability
of defects (little clustering)

* Resulting yield:

Ygamma — (1 | AODO)_

(84

May & Spanos
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Spatial Defects

 Random distribution
« Spatially uncorrelated
 Each defect “kills” one chip

I III Manufactu

Po

Spatially clustered

Multiple defects within
one chip (can’t already
kill a dead chip!)
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Negative Binomial Model, p. 2

e Large o limit (little clustering)

— gamma density approaches a delta function, and
yield approaches the Poisson model:

Y = limg oo (14 2220) ™" = exp(—AgDy)

87

 Small o limit (strong clustering)
— yield approaches the Seeds model:

1 AogDo\ ™% _ 1
Y = lima o (1 + =5 ) — 1+ AqDqg

 Must empirically determine «.

— typical memory and microprocessors: o = 1.5 to
2

IIII-
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ANOVA — Fixed effects model

« The ANOVA approach assumes a simple mathematical

model:
Yti = T Tt T €4

= Mt + €t

* Where p, is the treatment mean (for treatment type t)
* And 7, Is the treatment effect
» With g; being zero mean normal residuals ~N(0,5,°)

1ty /
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The ANOVA Table

degrees
source of  sum of of mean square Fo Pr(F,)
variation  squares freedom
Between
2 SSt 52
treatments SST k—1 S = k—1 é table
Also referred to
Within / as ‘residual” SS
treatments 2 _ SSgr
SSr N —k sp= 7%
Total about 5 gg
thegrand §' S N — 1 g4, — 22D
average b D N—1

/ \

SSp =85+ 5SSk Vp = Vp + VR
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Example: Anova

A — I _ 4 -
A B C 121 o n=1 o Us=11
—_—— —_——
11 10 12 10 L oo S - - 7 = 10
10 8 10 8| — g
12 6 11 6 + o
. - i A B C
Excel: Data Analysis, One-Variation Anova - - =
| t=1) ({t=2) (t=3)
Anova: Single Factor
SUMMARY | SS1 = (12—-11)>+ (11 -11)* 4+ (10 - 11)* = 2
R Groups Count . Sum = Averag$1 Vanance1 9 S) _ 22 + 0:3 + 22 — 8
B 3 24 8 4 SSs = 124+0%24+172
C 3 33 11 1
ANOVA ss = MS, = 8/2=4
Source of Variation SS df MS F P-value F crit ‘ N T O P .
Between Groups 18 2 9 45 0.064 514 s3 = MS; = 2/2=1
Within Groups 12 6 2 < < _
t S = = — =
— L L R N —k 6
879 _ o011 12 | . T2 L el 2
F=—L=2-=45 2 _ 3(11-10)"43(8—10)“+3(11—10)
Sz 2 ; St = 31
Fo.05,2,6 = 5.14 —  SSt _ 18 _ 9
Fo.10,2,6 = 3.46 T

I III Manufacturing 2



Definition: Contrasts

=L[a+ ab—b—(1)]

1 o [.....] ="“Contrast”
= 2—[b+ ab—a-— (1)]

AB = L[ab+(1) a— b]
2n

—

A B AB
5331 + —To+ —T122

U= 2 2

I N .
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Response Surface: Positive Interaction

/\
v
_1_: +1
-1 1 . L high x
low x,
y=1+7X, +2X, +5X,X, X,

i
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Response Surface: Negative Interaction

high x,

22

1 H e 1+ 77X, +2X, = 5XX,
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“Surface” Averages

(bg)

(abc)
ﬂb)/’ (ab

)+ @+ (be)+ )]

I I I N . Courtesy of Dan Frey. Used with permission.
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ANOVA for 2k

« Now have more than one “effect”

* We can derive:
SSekec = (Contrast)? /n2k

e And it can be shown that:
SSTotal SSA + SSB + SSAB + SSError

i
I II Manufacturing
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Use of Central Data

« Determine Deviation from Linear Prediction
— Quadratic Term, or Central Error Term

e Determine MS of that Error
— SS/dof

« Compare to Replication Error

I III Manufacturing
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Definitions

" 2 2
y = /Bo + /lel T /Bzxz T ﬁllexz +/811X T /Bzx

Y- = grand mean of all factorial runs

Y. = grand mean of all center point runs

T = \2
SS _ NeNe (yF B YC)
Quadratic
N- + N,
MS . SSQuadratic
Quadratic

N

C

I I I H N
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Example: 22 Without Replicates;
Replicated Intermediate Points

40.0 41.5

_|_1 ® @
(40.3
A 40.5
<40.7
0 * 40.2
140.6

1 39.3 40.9

- [ ) )

-1 0 +1
B

| A B

(1 39.3 1 -1 -1 1

a 40.9 1 1 -1 -1

b 40 1 -1 1 -1

ab 41.5 1 1 1 1
Contrasts 161.7 3.1 1.3 -0.1
Effect 80.85 1.55 0.65 -0.05
Model 40.43 0.775 0.325 -0.025

Coefficients

Just using corner points:

y=40.43+0.775,X, +0.325x, — 0.025X,X,

I III Manufacturing
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Measures of Model Goodness — R?

Goodness of fit — R?
— Question considered: how much better does the model do than
just using the grand average?

2 _ SSr
1! ~ SSp

— Think of this as the fraction of squared deviations (from the
grand average) in the data which is captured by the model

Adjusted R?

— For “fair” comparison between models with different numbers of
coefficients, an alternative is often used

_ SSrlvr _ 1 _ sp
Radj 1 SSD/VD o 1 82D

— Think of this as (1 — variance remaining in the residual).
Recall vg = vy - v;

i
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Least Squares Regression

We use least-squares to estimate
coefficients in typical regression
models

Yi — ﬁil?i—|—67;, i:1,2,...,n; EZ'NN(O,OQ)
yi = ba;

Goal is to estimate (3 with “best” b

How define “best”?

— That b which minimizes sum of
squared error between prediction and
data

SS(B) = Z?:l(yi — ?JAz')2 — Z?:l(yi — 3%)2

— The residual sum of squares (for the
best estimate) is
SSmin — Z?zl(yz — bwz)Q — SSR

I III Manufacturing

Ay

Residual

e

SS(3)

\-J-SSmin

—
E
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Least Squares Regression, cont.

e Least squares estimation via normal
equations

— For linear problems, we need not X
calculate SS(B); rather, direct 2.y =9z
solution for b is possible >_(y —bx)x

— Recognize that vector of residuals 2.y =
will be normal to vector of x values at
the least squares estimate =

o Estimate of experimental error

— Assuming model structure is 5SSk
adeqguate, estimate s? of o2 can be ST = -1
obtained:

I III Manufacturing

0
0
S bx?
D
b=
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Precision of Estimate: Variance in b

 We can calculate the variance in our estimate of the slope,

b:
2Ty
b= &2
b
e Why?
V(b)

I III Manufacturing

= V() = =k s.e.(b) =/ V(b)

b+ s.e.(b)
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Confidence Interval for

e Once we have the standard error in b, we can calculate
confidence intervals to some desired
(1-00)100% level of confidence

b
Se(i)mt = B=bxt,ss.e.(b)
« Analysis of variance
— Test hypothesis: Hy:8=0b=0

— If confidence interval for 3 includes O, then 3 not significant

— Degrees of freedom (need in order to use t distribution)

>ouio= 2 ur + (v —0i)?
T

= p + n—p

p = # parameters estimated by least squares

I III Manufacturing
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Lack of Fit Error vs. Pure Error

 Sometimes we have replicated data
— E.g. multiple runs at same x values in a designed experiment

 We can decompose the residual error contributions

Where
SSR = SSL + SSE SSg, = residual sum of squares error
SS, = lack of fit squared error
SS¢ = pure replicate error

 This allows us to TEST for lack of fit
— By “lack of fit” we mean evidence that the linear model form is
Inadequate

2

S
LNFI/

SE L, VE

i
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Regression: Mean Centered Models

e Model form y=a+ 8(z — )
e Estimate by jg=a+blx—2), (y;—1;)~N(0,0%)

Minimize SSr = > (y; — 9;)* to estimate o and 3

a = 7y b = Z(g(_w@—%;g)
E(a) = E(b) =3
Var(a) = Var [ZTy] =% Var(h) = 552 =5

I N .
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Regression: Mean Centered Models

e Confidence Intervals

i = yY+blz;—2)

Var(9;) = Var(y)+ (z; — z)*Var(b)
I Tl €7 t) R
T on + > (x;—T)% 59,
e Our confidence interval on output y widens as
we get further from the center of our data!

Ui £lays2 - Sg,
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Nested Variance Example (Same
Data)

e Now — groups are
simply replicates (not
changing treatment)

e But... assume there
are two different

S - o I ° | sources of zero mean

3+ “Wa.. variances

e Goal — estimate these
two variances

Group 1 Group 2

i
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Variance in Observed Averages, Three
Levels
e As in the two level case, the observed

averages include lower level variances,
reduced by number of samples

2 2
O__:OQ.UW,OM
I I, |

W MW

— Above is for a balanced sampling plan, with
equal number of wafers and measurements for
each lot

I III Manufactu
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