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1Manufacturing

Exponentially Weighted Moving Average: 
(EWMA)

Ai = rxi + (1 − r)Ai −1 Recursive EWMA

UCL, LCL = x ± 3σ A
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SO WHAT?
• The variance will be less than with xbar, 

• n=1 case is valid
• If r=1 we have “unfiltered” data

– Run data stays run data
– Sequential averages remain 

• If r<<1 we get long weighting and long delays
– “Stronger” filter; longer response time
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Mean Shift Sensitivity
EWMA and Xbar comparison
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Effect of r
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Small Mean Shifts

• What if Δμx is small with respect to σx ?

• But it is “persistent”

• How could we detect?
– ARL for xbar would be too large
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Another Approach: Cumulative Sums

• Add up deviations from mean
– A Discrete Time Integrator

• Since E{x-μ}=0   this sum should stay near 
zero when in control

• Any bias (mean shift) in x will show as a trend

C j = (xi
i=1

j

∑ − x)
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Mean Shift Sensitivity: CUSUM
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An Alternative
• Define the Normalized Statistic

• And the CUSUM statistic

Zi =
Xi − μ x

σ x

Si =
Zi

i =1

t

∑
t

Which has an 
expected mean of 
0 and variance of 1

Which has an 
expected mean of 
0 and variance of 1

Chart with Centerline =0 and Limits = ±3
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Tabular CUSUM

• Create Threshold Variables: 

Ci
+ = max[0, xi − (μ0 + K ) + Ci −1

+ ]
Ci

− = max[0,(μ0 − K ) − xi + Ci −1
− ]

K= threshold or slack value for 
accumulation

K =
Δμ
2

Δμ = mean shift to detect

H :  alarm level (typically 5σ)

Accumulates 
deviations 
from the 
mean

typical
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Threshold Plot
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Univariate vs. χ2 Chart
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Multivariate Chart with 
No Prior Statistics: T2

• If we must use data to get
• Define a new statistic, Hotelling T2

• Where       is the vector of the averages for 
each variable over all measurements

• S is the matrix of sample covariance over all 
data

x   and  S

x
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Similarity of T2 and t2

vs.
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• Gamma probability distribution for f(D)
– proposed by Ogabe, Nagata, and Shimada; 

popularized by Stapper

Yield – Negative Binomial Model

• α is a “cluster” parameter
– High α means low variability 

of defects (little clustering)
• Resulting yield:

May & Spanos

Image removed due to copyright restrictions. Please see 
Fig. 5.4 in May, Gary S., and J. Costas Spanos. 
Fundamentals of Semiconductor Manufacturing and 
Process Control. Hoboken, NJ: Wiley-Interscience, 2006.
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Spatial Defects

• Random distribution
• Spatially uncorrelated
• Each defect “kills” one chip 

• Spatially clustered
• Multiple defects within 

one chip (can’t already 
kill a dead chip!)
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• Large α limit (little clustering)
– gamma density approaches a delta function, and 

yield approaches the Poisson model:

Negative Binomial Model, p. 2

• Small α limit (strong clustering)
– yield approaches the Seeds model:

• Must empirically determine α
– typical memory and microprocessors: α = 1.5 to 

2

May & Spanos
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ANOVA – Fixed effects model

• The ANOVA approach assumes a simple mathematical 
model:

• Where μt is the treatment mean (for treatment type t)
• And τt is the treatment effect
• With εti being zero mean normal residuals ~N(0,σ0

2) 

μ
τt

εti
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The ANOVA Table
degrees

source of sum of of mean square F0 Pr(F0)variation squares freedom

Between 
treatments

Within 
treatments

Total about 
the grand 
average

Also referred to
as “residual” SS
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Example: Anova
A B C

11 10 12
10 8 10
12 6 11

A B C
(t = 1) (t = 2) (t = 3)

12
10
8
6

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

A 3 33 11 1
B 3 24 8 4
C 3 33 11 1

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 18 2 9 4.5 0.064 5.14
Within Groups 12 6 2

Total 30 8

Excel: Data Analysis, One-Variation Anova



20Manufacturing

Definition: Contrasts

A =
1

2n
[a + ab − b − (1)]

B =
1

2n
[b + ab − a − (1)]

AB =
1

2n
[ab + (1) − a − b]

[…..] = “Contrast”
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Response Surface: Positive Interaction

y = 1+ 7x1 + 2x2 + 5x1x2
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Response Surface: Negative Interaction
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“Surface” Averages
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ANOVA for 2k

• Now have more than one “effect”
• We can derive:

SSEffect = (Contrast)2 /n2k

• And it can be shown that:
SSTotal = SSA + SSB + SSAB + SSError
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Use of Central Data

• Determine Deviation from Linear Prediction
– Quadratic Term, or Central Error Term

• Determine MS of that Error
– SS/dof

• Compare to Replication Error
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Definitions

yF = grand mean of all factorial runs
yC = grand mean of all center point runs

SSQuadratic =
nFnC (yF − yC )2

nF + nC

MSQuadratic =
SSQuadratic

nc

ŷ = β0 + β1x1 + β2 x2 + β12 x1x2 + β11x
2 + β2 x2
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Example: 22 Without Replicates; 
Replicated Intermediate Points

A

B

-1
-1

+1

0 +1

0

40.0 41.5

39.3 40.9

40.3
40.5
40.7
40.2
40.6

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

I A B AB
(1) 39.3 1 -1 -1 1
a 40.9 1 1 -1 -1
b 40 1 -1 1 -1
ab 41.5 1 1 1 1

Contrasts 161.7 3.1 1.3 -0.1

Effect 80.85 1.55 0.65 -0.05

Model 40.43 0.775 0.325 -0.025
Coefficients

y = 40.43 + 0.7751 x1 + 0.325x2 − 0.025x1x2

Just using corner points:
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Measures of Model Goodness – R2

• Goodness of fit – R2

– Question considered: how much better does the model do than 
just using the grand average?

– Think of this as the fraction of squared deviations (from the 
grand average) in the data which is captured by the model

• Adjusted R2

– For “fair” comparison between models with different numbers of 
coefficients, an alternative is often used

– Think of this as (1 – variance remaining in the residual). 
Recall νR = νD - νT
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Least Squares Regression
• We use least-squares to estimate 

coefficients in typical regression 
models

• One-Parameter Model:

• Goal is to estimate β with “best” b
• How define “best”?

– That b which minimizes sum of 
squared error between prediction and 
data

– The residual sum of squares (for the 
best estimate) is
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Least Squares Regression, cont.
• Least squares estimation via normal 

equations
– For linear problems, we need not 

calculate SS(β); rather, direct 
solution for b is possible

– Recognize that vector of residuals 
will be normal to vector of x values at 
the least squares estimate

• Estimate of experimental error
– Assuming model structure is 

adequate, estimate s2 of σ2 can be 
obtained:
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Precision of Estimate: Variance in b
• We can calculate the variance in our estimate of the slope, 

b:

• Why?
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Confidence Interval for β
• Once we have the standard error in b, we can calculate 

confidence intervals to some desired
(1-α)100% level of confidence

• Analysis of variance
– Test hypothesis: 
– If confidence interval for β includes 0, then β not significant

– Degrees of freedom (need in order to use t distribution)

p = # parameters estimated by least squares
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Lack of Fit Error vs. Pure Error
• Sometimes we have replicated data

– E.g. multiple runs at same x values in a designed experiment

• We can decompose the residual error contributions

• This allows us to TEST for lack of fit
– By “lack of fit” we mean evidence that the linear model form is 

inadequate

Where
SSR = residual sum of squares error
SSL = lack of fit squared error
SSE = pure replicate error
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Regression: Mean Centered Models
• Model form
• Estimate by
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Regression: Mean Centered Models
• Confidence Intervals

• Our confidence interval on output y widens as 
we get further from the center of our data!
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Nested Variance Example (Same 
Data)

Group 1 Group 2

• Now – groups are 
simply replicates (not 
changing treatment)

• But… assume there 
are two different 
sources of zero mean
variances

• Goal – estimate these 
two variances

3
5

7
9
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Variance in Observed Averages, Three 
Levels

• As in the two level case, the observed 
averages include lower level variances, 
reduced by number of samples

– Above is for a balanced sampling plan, with 
equal number of wafers and measurements for 
each lot
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