2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Торіс	Notes	References	
ADVANCED SPC			
Moving Averages	Windowed	L9 Ss 6–16	
	Exponentially-weighted (EWMA)		
Cumulative sum charts		L9 Ss 17–24	
Multivariate charts	Chi-square	L9 Ss 38–45	
	Hotelling T^2	L9 Ss 16–49	
YIELD			
Definitions	Functional yield	L10	
	Parametric yield	[Non-standard or	
Concept of critical area		device-specific	
Murphy yield model		situations]	
Clustering	Large α = little clustering		
	Small α = lots of clustering		
ANOVA			
	Fixed effects model	Lecture 11	
	Degrees of freedom		
FULL/FRACTIONAL	Contrasts	Lecture 12	
FACTORIAL	• Sums of squares – they add up (why?)		
MODELS; DoE;	• Projection to estimate effects from fractional-	Lecture 13	
REGRESSION	factorial designs		
	• Aliasing	Lecture 14	
Estimating residuals;	When you have replicates of corner points	PS6 Problem 1	
dealing with replicates	• Using replicated center points	PS7 Problem 2 **	
or a lack of them	• By discarding factors and using their SS (but	PS6 Problem 4	
	need to be happy that discarded factor is		
	insignificant <i>e.g.</i> 3-way interaction)		
	• Residual distribution should be normal,	** plus Excel example	
	homoskedastic	From Lec 13	
Identifying significant	Normal probability plots (care needed)	e.g PS7 Problem 2	
effects	• Using ANOVA (but need SS _E estimate first)		
Curvature testing	• Estimate SS _R (residuals); then:	Montgomery Ex 12-9;	
		Excel example (from	
	\overline{y}_F = grand mean of all factorial runs	Lec 13)	
	\overline{y}_{c} = grand mean of all center point runs		
	$SS_{Quadratic} = \frac{n_F n_C (\overline{y}_F - \overline{y}_C)^2}{n_F + n_C}$		
	SS _{Quadratic}		
	$MS_{Quadratic} = rac{SS_{Quadratic}}{n_c}$		
	c		
	• Define $F_0 = MS_{quadratic}/MS_{residual}$		

Lack-of-fit testing	Possible when one or more effects has been disregarded. Curvature testing as a 'special' kind of lack-of-fit analysis, $SS_R = SS_L + SS_E$ $\frac{s_L^2}{s_E^2} \sim F_{\nu_L,\nu_E}$	Lecture 15
Model fitting	• From effects	Lecture 12, 13
	• Coefs directly from data (<i>write down formulae</i>)	May and Spanos §8.1
Confidence intervals	• Note formulae for variance of parameters	M+S section 8.1
PROCESS		Lecture 16
ROBUSTNESS		
NESTED	Formulae for contamination of variance	Drain Problem 4
VARIANCE	• Subtleties of performing the analysis	
	Requirements: random sampling	