MIT OpenCourseWare
http://ocw.mit.edu
2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MIT 6.780J, 2008

Assignment 5 solutions

Part 1 - Solutions removed due to copyright restrictions.

Part 2

(a) If yield of individual amplifiers is 99.5%, the yield of a memory block with 256 amplifiers each of which must function is $(0.995)^{256}=27.7 \%$. This is the functional yield of chips containing one memory block each.
(b) If there are four memory blocks per chip, the functional yield is $(0.277)^{4}=0.6 \%$.
(c) If the memory block can be reconfigured to function with 25 or fewer defective amplifiers, the yield is now:
$\sum_{k=0}^{25}{ }^{256} C_{k}(0.995)^{256-k}(0.005)^{k}$
We can use a Poisson approximation to this binomial distribution to ease evaluation, where $\lambda=0.005 \times 256=1.28$.
Then the yield is given by

$$
\sum_{k=0}^{25} \exp (-\lambda) \lambda^{k} / k!\approx 1
$$

