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MIT 2.830/6.780 Problem Set 2 (2008) — Solutions 

Problem 1 

Many interesting responses were received. We can discuss on an individual basis when selecting term 
projects. 

Problem 2 

Let x be the concentration of particles in particles/ft3: 

x ~ N(15.08, 0.025) 

Since the acceptable concentration range is 15.00 ± 0.10 particles/ft3, the probability that a system 
conforms to specifications is: 

P(14.9 ≤ x ≤ 15.1) = P(x ≤ 15.10) – P(x ≤ 14.90) 
= Φ([15.10–15.08]/0.05) – Φ([14.90–15.08]/0.05) 
= Φ([15.10–15.08]/0.05) – {1 – Φ([15.08–14.90]/0.05)} 
= 0.06554 – 1.59 × 10–4

 = 65.5% 

Problem 3 

Because we know neither the population’s mean nor its standard deviation, we need to use a t-test. The 
sample size is 10 so the number of degrees of freedom is 10 – 1 = 9. A 99% confidence interval on the 
mean photoresist thickness is given by: 

10 
≤ μ ≤ x + t(0.01/ 2),9 10 

x − t(0.01/ 2),9 
s s 

where the sample mean is 

x = 13.3962 μm 

and the sample variance is 

s2 = 
1 ∑(x − x)2 

= 1.5277 ×10−5 μm2 . 
9 

From tables, t0.005,9 = 3.250. The 99% confidence interval is therefore: 

13.3922 μm ≤ μ ≤ 13.4002 μm. 

http:N(15.08


Problem 4 


a) Histograms and normal probability plots for shearing data, sorted by material and end-of-sample.  


Histogram of sheared widths 1 Normal probability plot: width 1 
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Histogram of sheared widths 2 Normal probability plot: width 2 
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Histogram of sheared widths 1 Normal probability plot: width 1 
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Histogram of sheared widths 2 Normal probability plot: width 2 
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Skewness, kurtosis and normality test results for the two materials and two widths: 

Steel Aluminum 
Width 1 Width 2 Width 1 Width 2 

Skewness –0.3568 –0.7232 0.3199 –1.1607 
Kurtosis* 2.8899 3.3079 3.4622 5.8867 

Lillifors test at 5% level Reject Reject Accept Accept 

* Defined as 3 for a normal distribution. Values less than 3 correspond to leptokurtic distributions 
(sharper peak; fatter tails than a normal) and values larger than 3 correspond to platykurtic distributions 
(smaller peak; thinner tails). 

The Lilliefors test examines the hypothesis that the distribution is normal. ‘Reject’ in the table above 
means that the hypothesis of normality is rejected at the 5% level. For more information see, e.g., 
Lilliefors (1967) J. Am. Stat. Assoc., vol. 62, pp. 399–402. 

Examining the normal probability plots of the data, it would seem fairly reasonable to model the 
distributions of widths as normal, although there are some reasons to suspect that they may not be 
normal – e.g. the steel, width 1, data are ‘missing’ an upper tail; the steel, width 2, normal probability 
plot has a marked curve; the aluminum, width 2, data are ‘missing’ an upper tail. Could the data be 
skewed towards the lower values for some physical reason? A possible operator error involves not 
pressing the material hard against the stop on the shear, giving a shorter part, whereas one cannot push 
the material beyond the stop. The rather large kurtosis of aluminum width 2 data provides a further 
suggestion that the underlying distribution might not be normal. Meanwhile, the steel data fail the 
Lilliefors test of normality at the 5% level. 

b) To test whether there is a significant taper in the parts, consider that we have two measurements, w1 
and w2, per part. A paired test is needed. If we could assume that the amount of taper, w1–w2, was 
normally distributed, we could use a paired t-test; however, since the normal probability plots shown 
above raise some questions over whether any of the dimensions are normally distributed, we will not 
make this assumption and will use instead a Wilcoxon signed rank test, which does not assume any 
particular distribution. The test is implemented in Matlab as p = signrank(x), where x is a vector 
of differences between pairs, w1–w2 in this case, and p is the probability of observing the given x, or 
one more ‘extreme’, by chance if the median of x was in fact zero. 

For the steel parts: p = 0.738 
For the aluminum parts: p = 0.002 
(There are 45 samples for each material.) 

At the 5% level, therefore, there is no statistically significant taper in the steel parts but there is a 
significant taper in the aluminum parts. Even removing the outlier at sample 24 of the aluminum 
dataset, the p-value increases only to 0.005; there is still a significant taper. A histogram plot of the 
differences shows that the median of w1–w2 is slightly negative for aluminum. 

[The use of a paired t-test is acceptable as a solution if, in the previous part, the data were interpreted as 
coming from a normal distribution.] 



c) Run charts for the parts produced (blue symbols: w1; red symbols: w2): 

Run chart for steel parts 
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Run chart for aluminum parts 
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Looking at these run charts, it is difficult to say conclusively whether there is a mean shift for either 
material as the run progresses. Perhaps the width of the steel parts drifts up over time, but to make a 
quantitative evaluation of whether or not the process is stationary, we can use a control chart. That is 
what we will practice in Assignment 3. 

(Incidentally, ‘eyeballing’ the run chart for aluminum parts suggests to me a consistent taper, with w2 
being slightly larger) 
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d) For whole injection molding dataset: 

Histogram and normal probability plot: 

Histogram, whole dataset	 Normal probability plot, whole dataset 
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The kurtosis is 2.2; the form of the normal probability plot suggests that in the center of the distribution 
an assumption of normality is reasonable, while the tails seem to be ‘missing’ when the experimental 
data are compared to a normal distribution. Skewness = 0.21; there is not a particularly marked skew in 
the data. At the 5% level the assumption of normality is rejected by the Lilliefors test. 



e) For the four process settings in turn: 

Histogram, operating point 1 Normal probability plot, operating point 1 
6 0.98 

0.95 
0.90 

F
re

qu
en

cy
 

F
re

qu
en

cy
	

F
re

qu
en

cy 4 

2 

F
re

qu
en

cy
 

F
re

qu
en

cy
	

F
re

qu
en

cy 0.75 

0.50 

0.25 

0.10 
0.05 

0 0.02 
2.02	 2.03 2.04 2.05 2.03 2.035 2.04 

Diameter (in) Diameter (in) 
Histogram, operating point 2 Normal probability plot, operating point 2 
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Histogram, operating point 4 Normal probability plot, operating point 4 
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The skewness, kurtosis and Lilliefors test results are shown below: 

Operating point 1 2 3 4 
Sample mean (in) 2.0327 2.0389 2.0427 2.0410 
Sample s.d. (in) 0.0031 0.0063 0.0047 0.0062 
Skewness 1.1690 0.1463 –0.1153 0.0733 
Kurtosis 3.2550 1.8031 2.0158 3.0531 
Lilliefors test (5%) Reject Accept Accept Reject 
Sample size 15 15 15 25 

After separating the data associated with each operating point, the Lilliefors test accepts the hypothesis 
of normality at the 5% level in two of the four cases. 

f) We wish to compare the mean diameter produced at operating points 1 (low hold, low velocity) and 
4 (high hold, high velocity). Since the tests of normality above suggested that the underlying 
distributions were not normal, we cannot use a t-test. Instead we use a Wilcoxon rank sum test, which 
is distribution-independent. It is implemented in Matlab as [p,h] = ranksum(x,y) and tests the 
hypothesis that two given vectors x and y come from distributions with equal medians. p is the 
probability of observing the given x and y, or samples more ‘extreme’, by chance, if the medians of x 
and y are in fact equal. h is the result of testing at the 5% level the hypothesis that x and y come 
from distributions with equal medians, and is equal to 1 if the null hypothesis is to be rejected. 

For operating points 1 and 4, the rank sum test gives a p-value of 7 × 10–5, and the hypothesis that the 
underlying means are equal is rejected at the 5% level. Therefore there is significant evidence of a 
difference in median output between these operating points: the ‘low hold, low velocity’ condition 
gives smaller-diameter parts. 

[The use of a t-test is acceptable as a solution if, in the previous part, the data were interpreted as 
coming from a normal distribution.] 




