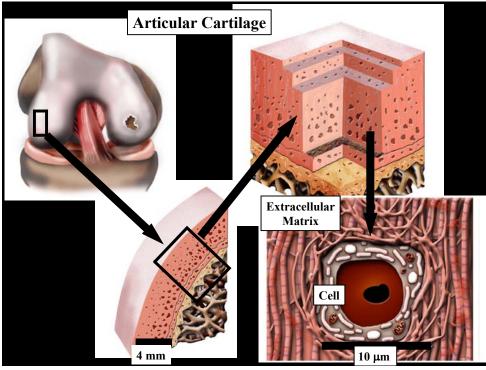
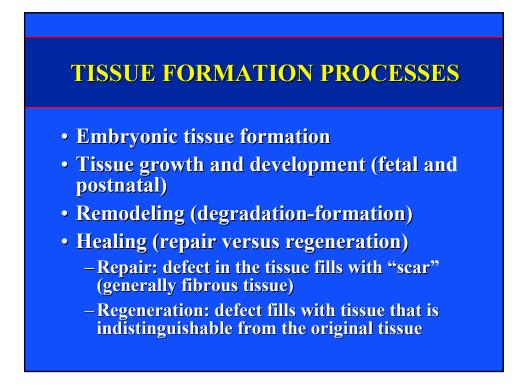

Massachusetts Institute of Technology Harvard Medical School Brigham and Women's Hospital VA Boston Healthcare System

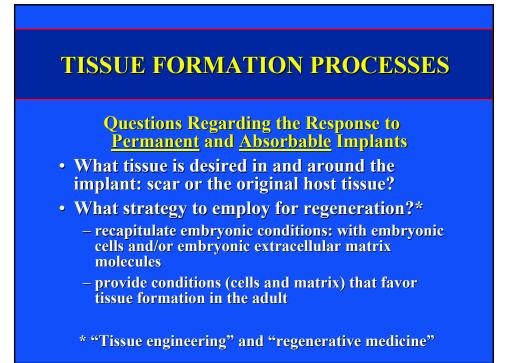


2.782J/3.961J/BEH.451J/HST524J


TISSUE ENGINEERING I. Overview

M. Spector, Ph.D.

Figures by MIT OCW.



TISSUE FORMATION PROCESSES

Response to <u>Permanent</u> and <u>Absorbable</u> Implants

- Tissue formation in the gap* between the implant and surrounding host tissue
- Tissue formation in pores of porous implant

* Gaps could be on the micrometer length scale

TISSUE ENGINEERING

What is tissue engineering?

- Production of tissue *in vitro* by growing cells in porous, absorbable scaffolds (matrices).
 - Why is tissue engineering necessary?
- Most tissues cannot regenerate when injured or diseased.
- Even tissues that can regenerate spontaneously may not completely do so in large defects (*e.g.*, bone).
- Replacement of tissue with permanent implants is greatly limited.

TISSUE ENGINEERING VS. REGENERATIVE MEDICINE

TISSUE ENGINEERING

Regeneration <u>In Vitro</u> Produce the fully formed tissue *in vitro* by seeding cells into a biomaterial matrix, and then implant the regenerated tissue into the body.

REGENERATIVE MED.

Regeneration <u>In Vivo</u> Implant the biomaterial matrix with, or without seeded cells, into the body to facilitate regeneration of the tissue *in vivo*.

TISSUE ENGINEERING VS. REGENERATIVE MEDICINE

TISSUE ENGINEERING Regeneration *In Vitro*

Advantages

• Evaluation of tissue prior to implantation

Disadvantages

- For incorporation, must be remodeling
- Stress-induced architecture cannot yet be produced *in vitro*

REGENERATIVE MED. Regeneration *In Vivo*

Advantages

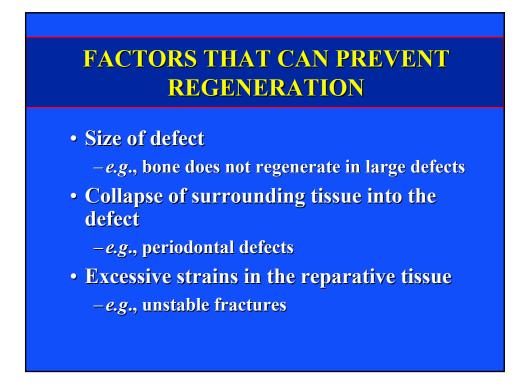
 Incorporation and formation under the influence of endogenous regulators (including mechanical strains)

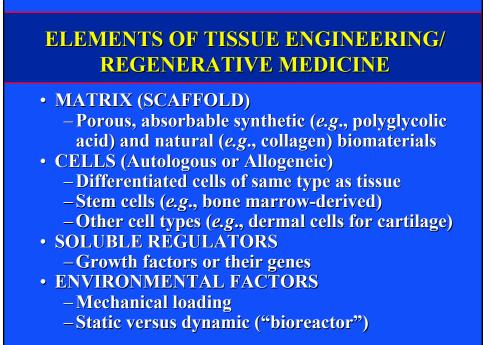
Disadvantages

• Dislodgment and degrad. by mech. stresses *in vivo*

TISSUE ENGINEERING/REGEN. MED. Historical Perspective; Selected Milestones

- **1980 Yannas: Collagen-GAG matrix for dermal** regeneration ("artificial skin"); Integra
- **1984 Wolter/Meyer: 1st use of the term, TE; endothel.** like layer on PMMA in the eye
- **1991 Cima/Vacanti/Langer:** Chondrocytes in a PGA scaffold; the ear on the nude mouse
- 1993 Langer/Vacanti: Science paper on TE; cells in matrices for tissue formation *in vitro;* PGA
- **1994 Brittberg/Peterson: NEJM paper on human** autologous chondrocyte implantation; Carticel


TISSUE ENGINEERING Current Status


- No one has yet employed Tissue Engineering methods to fully regenerate any tissue that does not have the capability for spontaneous regeneration*.
- Experience has taught us that full regeneration may not be necessary to achieve a meaningful clinical result (*e.g.*, pain relief, recovery of function, esthetics)
- How close to regeneration is good enough?

* Many examples of bone regeneration

Which Tissues Can Regenerate?

	Yes*	No	
Connective Tissues			
• Bone			
 Articular Cartilage, Ligament, Intervertebral Disc, Others 			
Epithelia (<i>e.g.</i> , epidermis)	\checkmark		
Muscle			
 Cardiac, Skeletal 		\checkmark	
• Smooth			
Nerve			
* If defects are large, regeneration may not be complete.			

Tissue Features Relating to Regeneration of Musculoskeletal Connective Tissues

Required for regeneration	Vasc. ¹	# Cells ²	Mitosis ²	Migrate ²	Synthesis ³
Bone	+	+	+	+	+
Articular Cartilage	-	-	-	-	-
Ligament/Tendon	-	-	+	+	+
Intervertebral Disc	_	_	+	+	+
Meniscus	-	-	÷	÷	+

Guide to tissue engineering

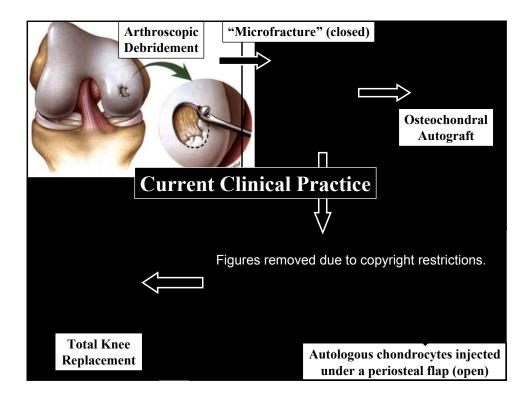
- ¹ Lack of a fibrin clot requires use of a matrix
- ² Lack of cells requires a procedure to bring cells to the defect
- ³ Low biosynthesis may require use of a growth factor

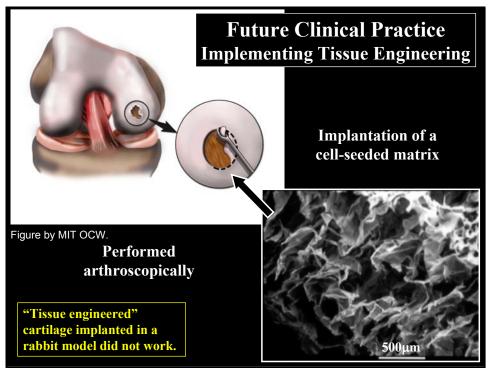
THERAPEUTIC APPROACHES IMPLEMENTING TISSUE ENGINEERING

- Injection of cells alone

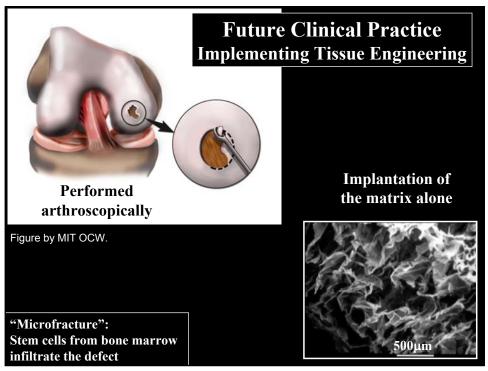
 contained in defect or uncontained
- Injection of growth factor alone
- Implantation of scaffold alone (with microfracture)
- Implantation of scaffold incorporating GFs or genes
- Implantation of scaffold-free tissue construct*
- Implantation of cell-seeded scaffold*

* Degree of maturation of the construct prior to implantation: relative to integration and stress-induce architecture?

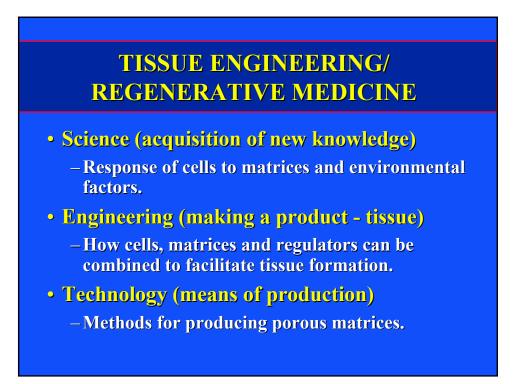

CELL THERAPY FOR LOCAL REPAIR


Injection of Exogenous Cells; Cells Expanded in Number in Monolayer Culture

- Chondrocytes for cartilage repair (ACI)
- Intervertebral disc cells for herniated disc
- Stem cells into spinal cord lesions
- Stem cells into brain lesions*
- Myoblasts and stem cells for myocardial infarction*
- Stem and other cells into the retina
- Stem cell injection into the joint


* Evidence of stem cell migration to the site of injury.

	 Articular Cartilage Defects Important Clinical Problem Incidence is high and increasing due to increasing activity levels Causes pain and disability Profoundly impacts the quality of life 		
	Articular Cartilage Defects		
	Do Not Heal • Avascular		
Figures by MIT OCW.	• Aneural		
rigules by MIT OCW.	• Low cell density		
	 Cells of low mitotic activity 		
	Cells cannot freely migrate		
	through the extracellular matrix		



Yannas, et al. PNAS (1989).

Yannas, et al. PNAS (1989).

TISSUE ENGINEERING Why tissue engineering now?

Enabling Technologies

- Cells
 - -Cell proliferation *in vitro* with recovery of phenotype
- Matrices
 - -Synthesis of porous, absorbable scaffolds
- Regulators
 - -Genetically engineered growth factors

TISSUE ENGINEERING

Emerging Enabling Technologies

- Cells
 - -Stem cell sources and cues for differentiation
 - -Genetically modified cells
- Matrices
 - -Chemistries that regulate selected cell functions
- Regulators
 - -Incorporation of GF genes into matrices
 - -Control of selected cell behavior (contraction)
 - Mechanical loading to regulate cell function

TISSUE ENGINEERING ADVANCES

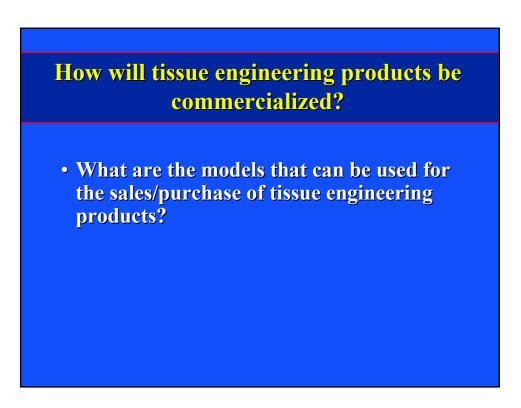
Scaffolds	 Novel polymers self-assemblying peptides thermosensitive and photopolymerizing Controlled mechanical behavior undergo cell-mediated contraction Free-form fabrication
Cells	 Conditions for cell expansion; <i>ex vivo</i> gene transfer* Stem cells*; sources; expansion Scaffold-free cartilaginous constructs* Cell-seeded scaffolds*; bioreactor; mech. condition.
Regulators	 • GFs (<i>e.g.</i>, BMP-2) incorporated into scaffolds • Novel regulators • Genes for GFs incorporated into scaffolds
	* Large animal model

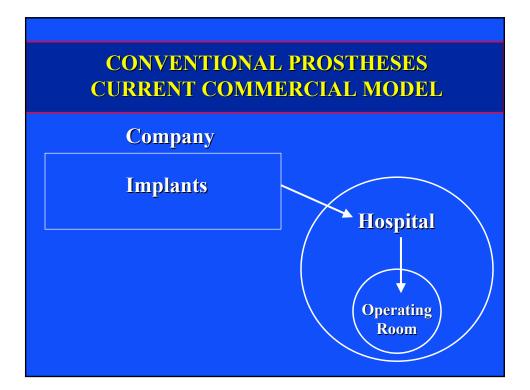
- Morphological/Histological/Biochemical
 - Match the composition and architecture of the tissue.
 - Problem: A complete analysis is difficult and no clear
 - relationships yet with functional and clinical endpoints.
- Functional
 - Achieve certain functions; display certain properties (*e.g.*, mechanical properties).
 - Problem: Difficult to measure all properties; Which properties are the most important?
- Clinical
 - Pain relief.
 - Problems: Can only be evaluated in human subjects and the mechanisms (including the placebo effect) and kinetics of pain relief (*e.g.*, how long it will last) are unknown.

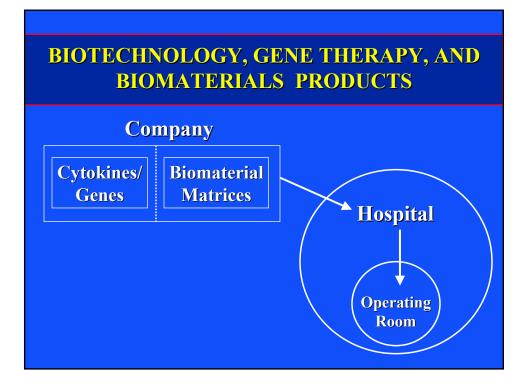
TISSUE ENGINEERING Risks

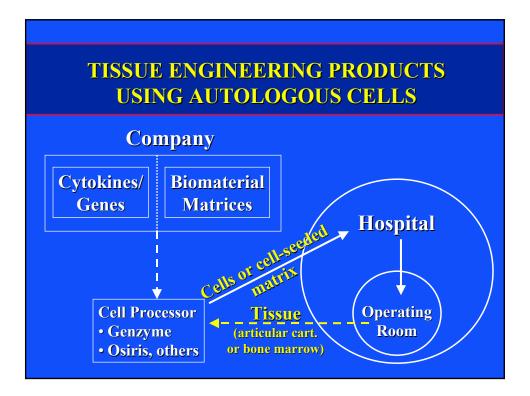
Exercise caution that the tissue engineering solution does not create larger problems that being solved.

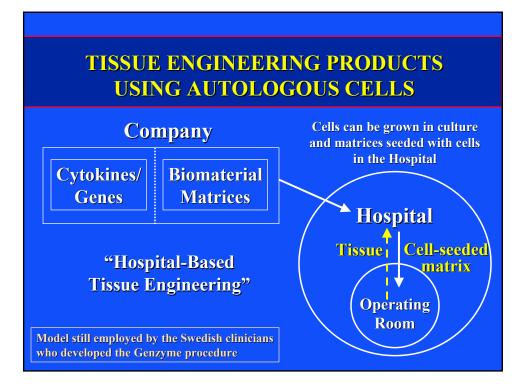
- Tissue harvest for the isolation of cells places the donor site and surrounding tissue at risk of degeneration.
- Implants that accelerate the breakdown of surrounding tissues.

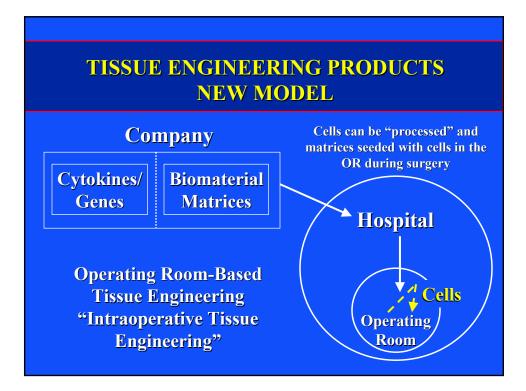

EFFECTS OF THE CARTILAGE REPAIR PROCEDURES ON UNINVOLVED CARTILAGE ?

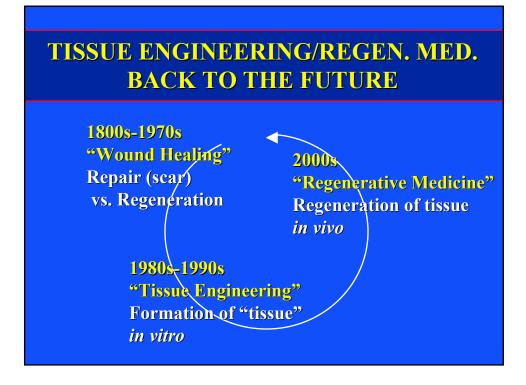

Effects of Harvest (Canine Model)

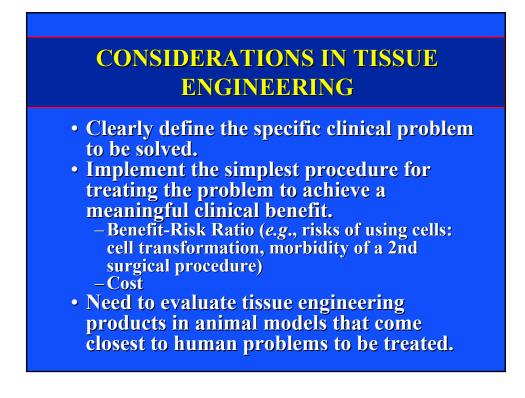

- Changes in the mechanical properties of AC at sites away from the harvest, 4-mo post-op (up to 3fold).
- Changes were consistent with hypertrophy, predisposing to osteoarthritis.




<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>







TISSUE ENGINEERING

Issues to be Addressed

- Should the tissue be produced *in vitro*, for subsequent implantation, or *in vivo*?
- What scaffold should be used?
 - Material of fabrication, pore characteristics, absorbability, mechanical properties?
 - How to be manufactured?
- What cells are to be used?
 - Source of cells?
 - Under what conditions can cells be expanded in number *in vitro* while retaining their phenotype?
- What regulators are required to stimulate cell proliferation and matrix synthesis or to facilitate differentiation of stem cells?