2.76/2.760 Multiscale Systems Design & Manufacturing

Fall 2004

MOEMS

Devices for Optical communications system

Switches and micromirror for Add/drops

Diagrams removed for copyright reasons.

MOEMS

MEMS technology

- Arrayable
- Nano-scale precision
- Reconfigurable

VGA SVGA XGA SXGA UXGA:

Various kinds of Micromachined Switches

1x2 switch

Moving fiber switch

Diagrams removed for copyright reasons.

NxN switch

Arrayability

- Massive Parallel Array for display
- Texas Instrument's Digital Micromirror Display, DLP (Digital Light Processing)
- Daewoo's TMA (Thinfilm Micromirror Array)

Parallel Plate Electrostatic Actuator

$$C = \varepsilon A / d$$

$$F = -\nabla U(potential - energy) = \frac{\varepsilon A V^2}{2d^2}$$

$$F_{electrostatic} = ->$$

$$F_{VanderWaals} = \frac{H}{6\pi} \frac{z_0}{d^3(d + z_0)}$$

$$F_{capillary} = \frac{2\gamma d_0 \cos \theta}{d^2}$$

Cantilever Beam

MEMS processes

Completed Device

Key Features of DMD

Photos removed for copyright reasons.

Number of moving parts	Up to 2 million pixels		
Mechanical motion	Makes discrete contacts or landings		
Lifetime requirement	450 billion contacts per moving part		
Address voltage	Limited by 5 volt CMOS technology		
Mechanical elements	Al		
Process	Low temp., sputter deposition, plasma etch		
Sacrificial layer	Organic, dry-etched, wafer-level removal		
Die separation	After removal of sacrificial spacer		
Package	Optical, hermetic, surface coating		
Testing	High-speed electro-optical before die separation		

TMA Projection System

Diagrams (several slides worth) removed for copyright reasons.

Key Processes

Mirror Flatness

(97 μ m imes 97 μ m TMA mirror)

Optical Flatness of Micromirrors

Deflection behavior of cantilever beams

- (a) when M1 is dominant and
- (b) when M2 is dominant

Initial Deflection Model

Observed Initial Deflection

Sang-Gook Kim, MIT

Anchor Modification

< Tested anchor designs >

Effect of Aanchor Modification

Reduction of the initial deflection \Rightarrow up to 35 %

XGA 1024 X 768 786,432 pixels (1999.8)

Photos removed for copyright reasons.

Conventional AFM: Cantilever with a sharp tip

•Detailed Resolution: 10 nm in XY, 0.1 nm in Z.

• Very Slow: 5 minutes for (40 um)² (typical, contact mode).

AFM(Atomic Force Microscope)

High Speed AFM Cantilever with Built-in Piezoelectric Actuator

Photos removed for copyright reasons. See Y. K. Kim, J. M. Bae, S. Y. Son, J. H. Choi, and S. G. Kim, "High Speed Atomic Force Microscope Cantilevers with Built-in Piezoelectric Actuator", Proc. of MOEMS '99, Mainz, Germany, September 1999.

Actuator built-in cantilever

(a) Crystal axis exposure pit on a low stress silicon nitride mask with SOI wafer

(b) Double sided aligning of bottom bulk etch mask and top tip mask

(c) Tip sharpening and PZT actuator patterning

(d) Silicon cantilever pattern with oxide insulator removal and backside bulk etch. \Box

AFM Cantilevers' Actuators

	Conventional	Stanford	Nikon	Daewoo
Туре	Piezo-tube	Thin Film Actuator		
Material	PZT	ZnO	PZT	PZT
Resonant Frequency	0.2 ~ 20 kHz	50 ~ 100 kHz	40 kHz	200 ~ 300 kHz
Displacement	~ 0.1µm/V	0.03µm/V	0.05µm/V	0.8µm/V

In-Plane AFM Probe with Dual Stiffness

Specifications of Proposed In-Plane AFM Probe

- Dimensions: Height 250 μm; Length 500μm; Thickness 10 μm
- Stiffness: low mode 0.2 N/m; high mode 1.5 N/m
- **Z stroke:** 5 µm
- Resonant frequency: low mode 3 kHz; high mode 9 kHz
- Pull in voltage of clutches: less than 50
 V

Design for arrayability

 Massively parallel arrays of in-plane AFM probes in 1D and 2D

M.I.T. Case No. 10665, US patent pending, Sang-Gook Kim, Yong-Ak Song, Clemens Mueller-Falcke, 1-28-2004 Sang-Gook Kim, MIT

MOEMS

MEMS technology

- Arrayable
- Nano-scale precision
- Reconfigurable

Functionality Scale-order