2.76/2.760 Multiscale Systems Design & Manufacturing

Fall 2004

Piezoelectricity-2

Spontaneous polarization

 $\Delta \vec{P} = \vec{P}(\text{polar}) - \vec{P}(\text{nonpolar}) / a^2 c$

: Polarization per unit cell volume

HW1: Calculate the magnitude of spontaneous Polarization. a=3.992 A, c=4.036a 1e=1.602x10⁻¹⁹ C

> Dipole moment= Σ charge x position shift = 8(2e/8)(0.06 x 10⁻¹⁰ m) + 4e(0.1 x 10-10 m) + 2(-2e/2)(-0.03 x 10-10 m)

=0.9292 x 10^{-29} C m Volume=a x a x c=64.3 x 10^{-30} m³

Spontaneous Polarization = 0.145 C/m^2

d₃₁ vs d₃₃

Principles of piezoelectric

Piezoelectricity

Direct effect

 $D = Q/A = dT \qquad E = -gT$ Converse effect $S = dE \qquad g = d/\mathcal{E} = d/K\mathcal{E}_{o}$

- D: dielectric displacement, electric flux density/unit area
- T: stress, S: strain, E: electric field
- d: Piezoelectric constant, [Coulomb/Newton]

Piezoelectric Charge Constants

Coarse Positioning

- Screw
- Louse
- Beetle

Courtesy of Friedrich-Alexander University. Used with permission. Source: "Scanning Tunneling Microscopy" http://www.fkp.uni-erlangen.de/methoden/stmtutor/stmtech.html

STM tip scanning

$$\Delta x = d_{31}V\frac{L}{h} \qquad \frac{\Delta x}{V} = d_{31}\frac{L}{h}$$

$$\frac{\Delta x}{V} = ?$$

Resonant frequency=?

Courtesy of Friedrich-Alexander University. Used with permission. Source: "Scanning Tunneling Microscopy" http://www.fkp.uni-erlangen.de/methoden/stmtutor/stmtech.html

> PZT-5H d31: -2.74 Angstrom/V d33: 5.93 A/V E: 6.1 10¹⁰N/m2 Tc: 195 C Q: 65 ρ: 7.5g/cm3 C: 2.8 km/sec

Bimorph bender

Courtesy of Friedrich-Alexander University. Used with permission.

Source: "Scanning Tunneling Microscopy" http://www.fkp.uni-erlangen.de/methoden/stmtutor/stmtech.html

 $\sigma_{1} = \pm Ed_{31}V \frac{1}{h/2}$ $\sigma(z) = \sigma_{1} - \alpha z$ $M = 0 = \int z\sigma(z)dz$ $\alpha = \frac{3\sigma_{1}}{h}$ $radius : \rho = \frac{h^{2}}{6d_{31}V}$ $\Delta z = 3d_{31}V \frac{L^{2}}{h^{2}}$

Tube scanner

• Piezo Tube with 1/4 electrodes

Courtesy of Friedrich-Alexander University. Used with permission. Source: "Scanning Tunneling Microscopy" http://www.fkp.uni-erlangen.de/methoden/stmtutor/stmtech.html

Tube scanner, deflection

Curvature

$$R = \frac{\pi Dh}{4\sqrt{2}d_{31}V}$$
$$\delta y = \frac{2\sqrt{2}d_{31}VL^2}{\pi Dh}$$

Resonant frequency 40KHz (z), 8 KHz(x,y), For a tube of 12.7mm L, 6.35 mm diameter, 0.51mm thick

Design of a Z-axis scanner

Component schematic removed for copyright reasons. Physik Instrumente Z-positioner P-882.10, in http://www.pi-usa.us/pdf/2004_PICatLowRes_www.pdf, page 1-45.

Ordering Number*	Dimensions A x B x L [mm]	Nominal Displaceme nt [µm @ 100 V] (±10%)	Max. Displaceme nt [µm @ 120 V] (±10%)	Blocking Force [N @ 120 V]	Stiffness [N/µm]	Electrical Capacitance [µF] (±20%)	Resonant Frequency [kHz]
P-882.10	2 x 3 x 9	7	9	215	26	0.13	135

Case 1: Piezoelectric micro-actuators

<u>Positives</u>

- Low power and voltage for thin films
- 2. High force
- 3. Compact

Modified from P. Krulevitchet al, "Thin Film Shape Memory Alloy Microactuators," JMEMS Vol. 5, No. 4. 1996 pp 270-282.

Leveraged Amplification

Bow Strain Amplifier

US Patent pending, N. Conway, S. Kim

Amplification depends on 2 factors

$$\theta_o = initial angle$$

Figure by MIT OCW.

$$\frac{\Delta y}{\Delta x} = \frac{\sin\theta - \sin\theta_0}{\cos\theta - \cos\theta} = -\frac{1}{2}\cot\left(\frac{1}{2}(\theta + \theta_0)\right)$$

Small angles yield enormous amplification

Sang-Gook Kim, MIT

MIT Bow-actuator Nick Conway, MS 2003

Flexural pivots enable a parallel guiding linkage in a high aspect ratio structure.

Process Flow 1- 4 mask process

Deposit oxide (SiO₂) layer on Si substrate

Deposit and pattern Pt/Ti bottom electrode layer (#1)

Spin-on PZT

3

Process Flow 2

Pattern then anneal PZT (#2)

Deposit top electrode (platinum) (#3)

Spin-on SU-8 (30 µm) and cure, expose, and develop (#4)

RIE oxide

XeF₂ etch away Si to release actuator

Finished

Note: SU-8 non-conducting.

MEMS-Strain-Amplifier

Nick Conway, Micronanosystems Laboratory, MIT

Arrayed configurations – Cellular analog digital actuation

Case: Piezoelectric Micro Power Generator

MIT Media Lab, Shoe Power

MIT EECS, Chandrakasan Energy Amplifier

Comparison of Energy Scavenging

Energy Source	Power Density for 10 Years
Solar (outdoor)	15,000 μW/cm ³
Solar (indoor)	6 μW/cm ³
Vibrations (piezoelectric)	250 μW/cm ³
Vibrations (electrostatic)	50 μW/cm ³
Acoustic noise	$0.003 \ \mu W/cm^{3}(at \ 75 \ dB)$
Temperature gradient	15 μW/cm ³ (at 10 °C gradient)
Batteries (non-rechargeable)	$3.5~\mu W/cm^3$ (45 $\mu W/cm^3$ one year life)
Batteries (rechargeable)	$0 \ \mu W/cm^3$ (7 $\mu W/cm^3$ one year life)
Hydrocarbon fuel (micro heat engine)	33 μ W/cm ³ (330 μ W/cm ³ one year life)
Fuel cells (methanol)	$28~\mu W/cm^3$ (280 $\mu W/cm^3$ one year life)

Shad Roundy, Paul K. Wright, Jan Rabaey, Computer Communications xx(2003) 1-14 Sang-Gook Kim, MIT

Energy Harvesting Concept with Piezoelectricity

Piezoelectrics

31

Device Design

- High strain: cantilever beam, proof mass
- High open-circuit voltage: d₃₃ interdigitated electrodes

Device Modeling

Governing equation for seismic excitation $m\ddot{z}_{o} = -b_{m}\dot{z}_{o} - kz_{o} + (EMC) - m\ddot{z}_{i}$

$$m\ddot{\delta} + b_m\dot{\delta} + k\delta - k\frac{d_{33}V_L}{b} = \frac{3t}{4L^2}m\ddot{z}_i$$

Open Circuit Voltage of PMPG

$$V_{s} = bE = -\frac{bd_{33}Y}{\varepsilon(1-k_{33}^{2})}\delta$$

- Y: Young's modulus
- δ : strain
- d: piezoelectric coeff.
- K_{33} : coupling constant

Device Fabrication

Device Fabrication (II)

(f) Packaging & PZT poling

Characterization of PZT films

PZT characterization

High performance PZT thin film $-d_{33}=200 \text{ pC/N}, d_{31}=-100 \text{ pC/N},$ $-\epsilon=1200,$ $-\tan\delta=0.02 \text{ at } 15 \text{ kHz}$

Cantilever Bow Control

Photos removed for copyright reasons.

Source: Jeon, Y.B., R. Sood, J.H. Joeng and S.G. Kim. "Piezoelectric Micro Power Generator for Energy Harvesting." Sensors and Actuators A: Physical, accepted for publication, 2005.

Cantilever Bow Control (II)

Cantilever Beam Structure

Fabricated PMPG devices

Photos removed for copyright reasons. Source: Jeon, Y.B., R. Sood, J.H. Joeng and S.G. Kim. "Piezoelectric Micro Power Generator for Energy Harvesting." Sensors and Actuators A: Physical, accepted for publication, 2005.

Top view of PMPG

SEM image of PMPG

Multiple cantilever device

Sang-Gook Kim, MIT

SEM image of PMPG

Set-up for measurement

Resonant Response of Cantilever Tip

3rd mode at 48.5 kHz

Power Generation

- First mode of resonance at 13.9 kHz with 14 nm amplitude
- Rectifying the AC signal, then store the charge
- Variation of load resistance

Schottky diodes: smallest forward voltage drop 10 nF mylar cap: low leakage current

Measurement of generated power

Y. Jeon, R. Sood, and S.G. Kim, Hilton Head Conference 2004

Summary

Characteristic	Li/MnO ₂	Li/LiCoO ₂	PMPG			
Nominal OCV	3.1 V	4 V	3V			
Internal Construction	Spiral	Thin Film	MEMS Packaging			
Hermeticity	Nonhermetic	Nonhermetic	Excellent			
Energy Density	637 Wh/L	0.8 mWh/cm ²	0.74 mWh/cm ²			
Operating Temperature	-20~60°C	-50~180°C	-20~80°C			
Storage Conditions	10 years	60,000 cycles (charge/discharge)	Infinite			
Sang-Gook Kim, MIT	• Energy conversion efficiency (η_p) η_p = generated energy/input energy ≈ 65 to 78 % • No voltage source needed • Open circuit voltage: 3V					

Power depends on

- Resonant Frequency
- Internal Capacitance and Resistance
- External Capacitance and Load Resistance
- Mechanical damping
- Membrane structure
- Electrode shape
- •Bow control?
- •Multi-cantilever \rightarrow Multiple bridges?

New Design for Efficient Power Harvesting

In progress,

- High resonant frequency products
 - Bridge Structures vs. Cantilevers
 - Smart bearings
- Low resonant frequency structures
 - Scavengers
- Monolithic Device Design
 - Mechanical Rectifiers

Self-supportive Wireless Sensors

Wireless Sensing Applications

Self-supportive Sensors

Can we avoid disasters?

Belgian gas pipe blast kills 15, destroys plants

Photo removed for copyright reasons

GHISLENGHIEN (Belgium) July 30 - A huge blast on a leaking gas pipeline in Belgium on Friday sent giant fireballs in the air and catapulted bodies hundreds of metres in the biggest industrial disaster in the country's recent history.

At least 15 people were killed and more than 100 injured when the explosion ripped through the underground pipeline in the industrial zone of Ghislenghien, near the town of Ath, 40 km (25 miles) southwest of Brussels.

PICTURE shows the cut gas pipeline which exploded at an industrial estate in Ghislenghien, southern Belgium, July 30. -AFPpix.