2.76/2.760 Multiscale Systems Design & Manufacturing

Fall 2004

Carbon Nanotubes

Moore's Law

The number of transistors per chip doubles every 18 months.

Moore's Law

_ Moor's Second Law	Year of introduction		Transistors	
	4004	1971	2,250	
	8008	1972	2,500	
	8080	1974	5,000	
	8086	1978	29,000	
	286	1982	120,000	
	386 ™	1985	275,000	
	486™ DX	1989	1,180,000	
	Pentium®	1993	3,100,000	
	Pentium II	1997	7,500,000	
	Pentium III	1999	24,000,000	
	Pentium 4	2000	42,000,000	

Lithography Tool Cost

Figure by MIT OCW. After International Sematech.

Aerial density, hard disk

Graph removed for copyright reasons.

• Superparamagnetic Effect

"a point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation, effectively erasing the recorded data."

Sang-Gook MIT

Limit of Optical Lithography

Year

- $W = k \lambda / NA$ (Rayleigh Eqn.) = $\lambda / (2. n.NA)$ •
- In 1975, 405 nm (Hg H-line) at an NA of 0.32, a linewidth of 1 µm •
- deep-UV (248-nm), 193 nm, 157nm •

Intel Road Map		
	Node	Lithography
	2000nm	i/g-line Steppers
	1500nm	i/g-line Steppers
	1000.000	ila lina Ctannara

Table 1: Wavelength "Generations"

Nano	impr	inting

- Soft Lithography
- Dip Pen Lithography
- SPM-based patterning

193 nm immersion lithography

1981 1984 1987 i/g-line Steppers 1000nm 1990 800nm i/g-line Steppers i/g-line Steppers 1993 500nm 1995 350nm i-line -> DUV 1997 250nm DUV 1999 180nm DUV 2001 130nm DUV 2003 90nm 193nm 2005 1<u>93nm</u> 65nm 157nm 2007 45nm 15/nin -> LUV 32nm and below 2009 EUV

Nanotechnology

Top-down Method

- nanostructures by shrinking macrostructures

Bottom-up Method

- self assembly of atoms or molecules into nanostructures

Science meets Engineering

Nanomanufacturing

Carbon nanotube

- 1959: Richard Feynman's famed talk.
- 1981: Binnig and Rohrer created the STM to image individual atoms.
- 1985: Curl, Kroto, Smalley discovered C₆₀.
- 1993: Iijima, Bethune discovered single wall carbon nanotubes.
- 1998: Cees Dekker's group created a TUBEFET
- Discovered by Sumio Ijima (NEC) in his study of arc-discharge products. *Nature*, 354, 56 (1991)
- Giant Fullerene molecules made of sheets of carbon atoms, coaxially arranged in a cylindrical shape.
 - • SWNT, single-walled nanotube (1 < d < 3 nm.)
 - MWNT, multi-walled nanotube (d > 3 nm)

Properties of Carbon Nanotubes

Graphene sheet

- Size: dimensions of ~1 nm diameter (~20 atoms around the cylinder)
- Electronic Properties: Can be either metallic or semiconducting depending on the diameter or orientation of the hexagons
- Mechanical: Very high strength and modulus. Good properties on compression and extension
- Highest Young's Modulus of all known materials (Y ~ 1.2 TPa).
- Extraordinary mechanical resilience: compression, tension, torsion and buckling without breaking C-C bonds

Rolling up graphene layer Nanotubes armchair $\theta = 30^{\circ}$

Diagrams removed for copyright reasons. See source below.

zigzag
$$\theta = 0^{\circ}$$

chiral $0 < \theta < 30^{\circ}$

$$d_{tube} = \frac{\sqrt{3}a_{cc}}{\pi} \sqrt{n^2 + nm + m^2}$$
$$\theta = \tan^{-1} \left[\sqrt{3}m / (2n + m) \right]$$

 $\overline{}$

Sang-Gook Kim, MIT

1.P. J. F. Harris, <u>Carbon nanotubes and related structures: new materials for the twenty-first</u> <u>century</u>, (Cambridge University Press, Cambridge, UK, 1999).

$$Ch = na_1 + ma_2$$

Possible Chiral Vectors

$$Ch = n\overline{a_1} + m\overline{a_2}$$
$$|Ch| = \sqrt{3}a_{cc}\sqrt{n^2 + nm + m^2}$$
$$d_{tube} = \frac{\sqrt{3}a_{cc}}{\pi}\sqrt{n^2 + nm + m^2}$$

Diagram removed for copyright reasons.

metal
$$\bigcirc$$
 semiconductor $(n-m) = 3q$ metallic $(n-m) = 3q \pm 1$ semiconducting

M. S. Dresselhaus, Electronic Structure of Chiral Graphene Tubules, Appl. Phys. Lett. 60 (18), 1992 Sang-Gook Kim, MIT

Characterization

- Structural
- Electrical
- Optical

Vibrational modes in nanotubes

Diagrams removed for copyright reasons.

Raman Spectroscopy of Carbon Nanotubes

M. S. Dresselhaus and P. C. Eklund, Advances in Physics 49 705 (2000)

- Non-destructive, contactless measurement
 - Room Temperature
 - In Air at Ambient Pressure
 - Quick (1min), Accurate in Energy
- Diameter Selective (Resonant Raman Effect)
- Diameter and Chirality dependent phonons
 - Characterization of (n,m)
 - Related to Low Dimensional Physics

Synthesis

- Arc discharge
 - Nanotubes found in soot produced in arc-discharge with catalytic metals such as Fe, Ni and Co (S. Iijima, 1991)
- Laser ablation
 - YAG laser ablation of graphite target in a furnace at 1200
 °C. (R. Smalley, 1996)

The location and alignment of the synthesized nanotubes can not be controlled.

- CVD
 - NT grown from nucleation sites of a catalyst in carbon based gas environments (Ethylene, Methane, etc.) at elevated temperatures (600 - 1000 °C).

Control of location, alignment, length and diameter, spacing between tubes

Arc Discharge

5-20mm diameter carbon rod

Laser Ablation

Nd-Yb-Al-garnet Laser, 1200

Diagram removed for copyright reasons.

Diagram removed for copyright reasons.

Y. Saito *et al. Phys. Rev.* 48 1907 (1993)

Sang-Gook Kim, MIT

A. Thess *et al. Science* 273 483 (1996)

- Yields >70% SWNT if double pulsed
- Ropes 10-20 nm dia, 100 μm length
- How to scale up?

Chemical vapour deposition (CVD)

- Acetylene over iron nanoparticles 700°C forms MWNT covered with amorphous C on outer layer
- Ethylene, hydrogen + methane over Co, Ni, Fe nanoparticles at 1000°C forms 70-80% SWNT uncapped
- 2CO -> C + CO₂ also forms NT

Diagram removed for copyright reasons.

VLS Mechanism

Process diagram removed for copyright reasons.

Si nanowire

Porous Anodic Alumina Films

Anodization Reaction :

 $2Al + 3H_2O \rightarrow Al_2O_3 + 6e^- + 6H^+$

Experiment Setup :

* Al film is electrochemically polished before anodization

- Controlling parameters:
 Voltage, Electrolyte, Temperature, Time
- Cell size $D \sim 2.5 \times V (nm)$
- Pore size $d \sim V(nm)$
- Pore size can be enlarged in acids

Alumina Templates on Silicon Wafers

M. Dresselhaus, MIT

Nanowire by Alumina Template

The new Al_2O_3/Si structure conserves the dense uniform porous morphology with long channels, but consists of a thinner barrier layer.

Block Copolymer Template

PS+PMMA copolymers

Diagram removed for copyright reasons.

Filling methods

Vertical growth with controlled density

Photos removed for copyright reasons.

• Aligned growth through PECVD

• Control nanotube density through controlling catalyst site density

Aligned Carbon Nanotube Growth

Catalytic CVD process: thermal or PE CVD

Sang-Gook Kim

MIT CNT PECVD

Vertically grown CNTs

- Growth modes
 - PECVD parameters
 ✓ Diameter
 ✓ Length

The Debye Length

- At some distance from the perturbing charge the electric potential energy will be equal to the thermal (kinetic) energy
- The quantity

$$\lambda_{De} = \sqrt{\frac{\varepsilon_0 k_B T}{n q_e^2}}$$

is called the (electron) Debye length of the plasma

• The Debye length is a measure of the effective shielding length beyond which the electron motions are shielding charge density fluctuations in the plasma

Carbon-nano tube Growth using Methane

Growth Conditions:

- Growth Time: 25 minutes
- Methane flow rate: 200sccm; Ammonia flow rate: 100sccm
- Pressure: 8 Torr
- Temperature: 600 C
- Plasma Voltage: 500V; Power: 165-215 Watts

Results:

- Length of tubes: 1-1.5 micro meters
- Diameter of tubes: 100-150 nm
- Perpendicularity: Vertical (Straight)

CNTs with methane PECVD

SWCN directly grown on silicon tip

Photos removed for copyright reasons.

- Wide usage:
 - high resolution imaging
 - chemical biological sensor
- Fabrication:
 - manual assembly(mounting)
 - CVD growth

Kazuhiko et al. APL, 78, 539, 2001

Nanotube AFM tip

Y. Nakayama et al, J. Vac. Sci. Tech., B18 (2000) 661.

- Merits of NT AFM tip
 - High aspect ratio
 - Small diameter
 - Flexible
 - Conductive

Photos and diagram removed for copyright reasons.

Challenges for Carbon Nanotube Research

- Process control to produce nanotubes with same diameter and chirality
 - metallic or semiconducting
- Develop large-scale, high productivity synthesis methods
- Develop large-scale, long range order assembly processes

Nanowire Array (Charles Lieber)

Image removed due to copyright reasons.

Source: Prof. Charles Lieber, Harvard University.

How to make horizontal wiring networks?

Directed Assembly

- One-dimensional assembly into functional networks
 - Lieber group, Science (291, 2001)

Figures removed for copyright reasons.

Aligned NT

- Large arrays of wellaligned Carbon on glass
 - Ren, *Science* (282, 1999), SUNY

Photos removed for copyright reasons.

Nanotubes for manufacturing

- Growing and controlling nanotube is a coupled process.
- Decoupling them as we do sodding?

Carbon Nanotube Assembly

Photos removed for copyright reasons.

Vertically grown MWNTs Ren, J. Mater. Res.16 (2001)

Nanostructures by growing only?

Nanopellets

Nanopelleting

S. Kim, US patent application No 60/417,959

Bundle CNT nanopellet CMPed and Transplanted

After CMP and then O₂ ashing

Sang-Gook Kim, MIT

Acc.V Spot Magn Det WD 25.0 kV 3.0 12000x GSE 19.3 2.4 Ton

Pelletizing & Transplanting

High aspect ratio nanopellets

Nanocandles

Cold cathode array, FED, Data storage, Multi-E-beam array for NGL

New Nanopelleting process

Processing Result

- High-aspect-ratio nanocandles with 20 μm in diameter and 110 μm in height achieved
- Single strand CNTs under progress

Material: SU-8 2075

In-Plane Assembly of High-Aspect Ratio Nanocandle

- Mechanical in-plane assembly of nanocandle in the V-groove with a micro probe tip
- Bonding of nanocandle in the V-groove with a drop of epoxy

MIT Nanopipette

 Nanotube assembly to the tip of a micropipette

- Nanotube assembly to the tip of an in-plane AFM
 - Parallel Imaging and Pipetting
 - Multi-energy probing
 - Manufacturable
 - Arrayable

Potential applications

- Massive Parallel Nanoprobe Array
- Nanojet Printing
- Nanotip Cell Manipulation
- 3D CNT structures