ADJUSTABLE GEOMETRIC CONSTRAINTS

Hundreds of years of use/development and the &#@!*&% thing is not yet accurate!?!?!?

Why adjust kinematic couplings?

KC Repeatability is orders of magnitude better than accuracy

Serial and parallel kinematic machines/mechanisms

SERIAL MECHANISMS

- Structure takes form of open loop
- I.e. Most mills, lathes, "stacked" axis robots
- Kinematics analysis typically easy

PARALLEL MECHANISMS

- Structure of closed loop chain(s)
- I.e. Stuart platforms & hexapods
- Kinematics analysis usually difficult
- 6 DOF mechanism/machine
- Multiple variations on this theme

Parallel mechanism: Stewart-Gough platform

6 DOF mechanism/machine

Multiple variations on this theme with different joints:

5 Cs

3 Cs

- Spherical joints: 3 Cs
- Permits 3 rotary DOF

Permits one linear DOF

Ball Joint

- Prismatic joints: • Planar:
- Permits two linear, one rotary DOF
- **Sliding piston Roller on plane**

E.g. Changing length of "legs"

Parallel mechanism: Variation

6 DOF mechanism/machine by changing position of joints Can have a combination of position and length changes

Kinematic couplings as mechanisms

Ideally, kinematic couplings are static parallel mechanisms

IRL, deflection(s) = mobile parallel kinematic mechanisms

How are they "mobile"?

- Hertz normal distance of approach ~ length change of leg
- Far field points in bottom platform moves as ball center moves ~ joint motions

Accuracy of kinematic mechanisms

Since location of platform depends on length of legs and position of base and platform joints, accuracy is a function of mfg and assembly

Parameters affecting coupling centroid (platform) location:

- Ball center of curvature location
- Ball orientation (i.e. canoe ball)
- Ball centerline intersect position (joint)
- ⊙ Ball radii
- Groove center of curvature location
- Groove orientation
- Groove depth
- Groove radii

Utilizing the parallel nature of kinematic couplings

Add components that adjust or change link position/size, i.e.:

• Place adjustment between kinematic elements and platforms (joint position)

• Strain kinematic elements to correct inaccuracy (element size)

Example: Adjusting planar motion

Position control in x, y, θ_z :

> Rotation axis offset from the center of the ball

Eccentric right Patent Pending

© 2001 Martin Culpepper

Eccentric left

Planar kinematic model

Equipping each joint provides control of 3 degrees of freedom

View of kinematic coupling with balls in grooves (top platform removed)

Limits on Linear Resolution Assumptions

		θις						
% Error	Lower Limit	Upper Limit	Half Range					
1	75	105	+/- 15					
2	70	110	+/- 20					
5	60	120	+/- 30					
10	47	133	+/- 43					

ARKC resolution analysis

Forward and reverse kinematic solutions

ARKC Kinematic Analysis Spread Sheet Do not change cells in red, only change cells in blue

	PART I: C	OUPLING CI	HARACTER	RISTICS	ations and hold	abte used to c	alaulata aa	unling positi	en in next II
	Use this to	specity groot	ve angles al	nu input bail foi	auons and neig	gnis used to c	alculate co	uping positi	on in part ii
	θ.,	90	dogroos		7.	5	microne		
	°1A	1 571	radiana		-1	0.0001060	inchos		
	A.,	220	dogroop			0.0001000	mones		
	02A	5.700	uegiees		_	500			
		5.760	radians		Z2	500	microns		
	θ3 _A	210	degrees			0.0196850	inches		
		3.665	radians						
					Z ₃	200	microns		
	θ_{1C}	87.7073	degrees			0.0078740	inches		
		1.531	radians						
	0 _{2C}	331.1455	degrees						
		5.780	radians						
	θ3 _C	211,1467	dearees						
		3 685	radians						
		0.000	radiano						
	E	125	microns						
		0.0049	inches						
	R _T	57150	microns	Note: R _T = L _{iD}					
		2.2500	inches						
	PART II: C	ALCULATED	D MOVEME	NTS					
	This takes	input from pa	rt I to calcul	late the position	of the top part	t of the coupli	ng.		
	θ _Z	0.0000	radians		θ _X	-0.004024	radians		
		0.0006	µradians			-4024.4889	µradians		
		0.000000	degrees			-0.230586	degrees		
		5 0005			0				
	×	5.0005	microns		θ _Y	-0.003031	radians		
		0.000197	inches			-3030.7040	µradians		
						-0.173647	degrees		
		0.0014	microne		-	225 0000	microne		
	У	0.000000	inches		2	0.009252	inches		
	L								
	PART III:	REVERSE SC	DUTION						
	Use this to	input a desir	ed position	and goal seek to	solve for the	position of th	e balls		
		DESIRED	POSITION	I					
		POSITION	ERROR				BALL SE	TINGS	
			0.00		urad				
	θz	0.000	0.00	0.0	μгаα		See part I	for modified	ball angles, the following angles are the difference between groove and ball angles
				_			θ1	-2.2927	degrees
	x	5.000	-0.001		microns		θ2	1.1455	degrees
				_			θ3	1.1467	degrees
	у	0.000	0.001		microns				
© 2001 Martin Culpepper									
	L								
	ERROR S	UM	2698.1	<- x, y, θ _z	<- Use the so	lver on this va	alue to set i	t to a value (ideally zero) that is small, but greater than or equal to 0.

Low-cost adjustment (10 µm)

Peg shank and convex crown are offset Light press between peg and bore in plate Adjustment with allen wrench Epoxy or spreading to set in place Friction (of press fit) must be minimized...

Moderate-cost adjustment (3 micron)

Shaft B positions z height of shaft A [z, θ_x , θ_y] Shaft A positions as before θ_z] [x, y,

Force source preload

I.e. magnets, cams, etc..

Mechanical interface wear management

Wear and particle generation are unknowns. Must investigate:

- Coatings [minimize friction, maximize surface energy]
- Surface geometry, minimize contact forces
- Alternate means of force/constraint generation

At present, must uncouple before actuation

PARTIAL CONSTRAINT

Motivated by coupling envy.....

Adding and taking away constraints

It may be helpful to add/remove DOF in coupling applications

For instance, KCs can not form seals

- We can add compliance to KCs to allow this to happen
- This is equivalent to adding a Degree of Freedom

Flexures

Care must be taken to make sure

- compliant direction is not in a sensitive direction
- Parasitic errors in sensitive directions are acceptable

Stiffness ratio

Actuation loads should be:

- Applied through center of stiffness
- In compliant direction

Error loads are often proportional to applied loads

- Example: Bolt head friction
- $\odot \quad T_B \thicksim F_B R_B \mu$
- Design for k_{sensitive} >> k_{non-sensitive}

Practical metric is stiffness ratio:

k_{sensitive} >> 1

k_{non-sensitive}

Stamped compliant kinematic couplings

© 2001 Martin Culpepper

Characteristics

Stroke≤ 0.25 inchesRepeatability5 -10 micronsBall movement in non-sens. direction

Applications/Processes

- 1. Assembly
- 2. Casting

Design Issues (flexure)

- 1. $K_r \sim \frac{W^2}{t^2}$
- 2. Tolerances affect K_r

Cost

\$ 10 - 200

Integral spring compliant kinematic couplings

© 2001 Martin Culpepper

Characteristics

- 1. Repeatability (2.5 micron)
- 2. Stroke ~ 0.5 inches

Applications/Processes

- 1. Assembly
- 2. Casting
- 3. Fixtures

Design Issues (flexures)

1.
$$K_r = \frac{K_{guide}}{K_{spring}}$$

2. Press fit tolerances

Cost

\$ 2000

Plastic compliant kinematic couplings

© 2001 Martin Culpepper

Characteristics

- 1. 180 microns
- 2. ~ 0.125 inches
- 3.1 Time Use

Applications/Processes

1. Sand Casting

Design Issues

- 1. Loose Sand
- 2. K_r application specific

Cost

- 1. Modify Pattern
- 2. Purchase Balls
- 3. Tie Rods

Experimental results

USING CONSTRAINTS IN MECHANISM DESIGN

Alternatives to motion with physical contact

Problems you can not avoid with contact:

- Surface topology (finish)
- Wear and Fretting
- Friction
- Limited resolution, at best on order of microns....

Wear on Groove

Next generation applications require nanometer level fixtures, i.e.:

- Fiber optics
- Photolithography

Compliant mechanisms:

- Mechanical reduction to interface with larger scale actuators
- Motion through strain
- Small and moderately sized motions in comparison to mechanism size
- Can be made to emulate machines

Compliant mechanism examples

University of Michigan: Prof. Sridhar Kota

• http://www.engin.umich.edu/labs/csdl/index.htm

Why compliant mechanisms in precision fixtures

- Repeatable/low hysteresis
- No assembly
- No contact

From kinematic couplings to compliant stages

High volume, low cost, multi-degree of freedom alignment Example 3 DOF flexure system:

Target applications: Opto-electronic packaging/alignment

Example 6 DOF alignment capability

Target app.: Micro and meso scale positioning (I.e. opto-electronics)

C, ∀_x, © 2001 Martin Culpepper

Patent Pending

Example 6 DOF alignment capability

Target app.: Micro/meso scale positioning (I.e. opto-electronics)

© 2001 Martin Culpepper

Patent Pending

3 DOF active alignment [x, y, z] & 2 DOF passive alignment [z, θ_y] Good fit for wire-EDM (stacked sheets) ~ order of \$1 - 10

Plastic deformation can be utilized for position keeping Device should be potted in place to avoid stress relief

Initial position

1		
	$\bigcirc \bigcirc $	

Plastically flexed

Static or flexible kinematic coupling Components biased toward each other Flexure takes up bias, provides mating force in z direction

