ADJUSTABLE GEOMETRIC CONSTRAINTS

Hundreds of years of use/development and the \&\#@!*\&\% thing is not yet accurate!?!?!?

Why adjust kinematic couplings?

KC Repeatability is orders of magnitude better than accuracy
Accuracy $=f$ (manufacture and assemble)

Accuracy

Repeatability

Accuracy \& Repeatability

Serial and parallel kinematic machines/mechanisms

SERIAL MECHANISMS

- Structure takes form of open loop
\odot I.e. Most mills, lathes, "stacked" axis robots
○ Kinematics analysis typically easy

PARALLEL MECHANISMS

\odot Structure of closed loop chain(s)
\odot l.e. Stuart platforms \& hexapods
© Kinematics analysis usually difficult
© 6 DOF mechanism/machine
© Multiple variations on this theme

Parallel mechanism: Stewart-Gough platform

6 DOF mechanism/machine
Multiple variations on this theme with different joints:
\odot Spherical joints: 3 C
๑ Prismatic joints: 5 Cs
○ Planar: 3 Cs

Permits 3 rotary DOF
Permits one linear DOF
Permits two linear, one rotary DOF

Ball Joint
Sliding piston
Roller on plane
E.g. Changing length of "legs"

© 2001 Martin Culpepper

Parallel mechanism: Variation

6 DOF mechanism/machine by changing position of joints
Can have a combination of position and length changes

Kinematic couplings as mechanisms

Ideally, kinematic couplings are static parallel mechanisms
IRL, deflection(s) = mobile parallel kinematic mechanisms
How are they "mobile"?
\odot Hertz normal distance of approach ~ length change of leg
\odot Far field points in bottom platform moves as ball center moves \sim joint motions

Model of kinematic coupling mechanism

Accuracy of kinematic mechanisms

Since location of platform depends on length of legs and position of base and platform joints, accuracy is a function of mfg and assembly

Parameters affecting coupling centroid (platform) location:

- Ball center of curvature location
- Ball orientation (i.e. canoe ball)
\odot Ball centerline intersect position (joint)
© Ball radii
- Groove center of curvature location
- Groove orientation
- Groove depth
- Groove radii

Utilizing the parallel nature of kinematic couplings

Add components that adjust or change link position/size, i.e.:

- Place adjustment between kinematic elements and platforms (joint position)

Strain kinematic elements to correct inaccuracy (element size)
-

$+$

Ball's center of curvature

Example: Adjusting planar motion

Position control in $\mathbf{x}, \mathrm{y}, \theta_{\mathbf{z}}$:
> Rotation axis offset from the center of the ball

Eccentric left

辟

Eccentric right

Patent Pending

ARKC demo animation

Planar kinematic model

Equipping each joint provides control of 3 degrees of freedom

View of kinematic coupling with balls in grooves (top platform removed)

© 2001 Martin Culpepper

Vector model for planar adjustment of KC

ARKC resolution analysis

For $E=125$ microns
$R_{90}=-1.5$ micron/deg
$R_{0}=" 0$ " micron/deg

Limits on Linear Resolution Assumptions

	Lower Limit (Degree]	Ulic Upper Limit (Degree]	Half Range [Degree]
1	75	105	$+/-15$
2	70	110	$+/-20$
5	60	120	$+/-30$
10	47	133	$+/-43$

Forward and reverse kinematic solutions

Low-cost adjustment (10 $\mu \mathrm{m}$)

Peg shank and convex crown are offset
Light press between peg and bore in plate Adjustment with allen wrench

Epoxy or spreading to set in place
Friction (of press fit) must be minimized...

Moderate-cost adjustment (3 micron)

Shaft B positions \mathbf{z} height of shaft A [z, $\theta_{\mathrm{x}}, \theta_{\mathrm{y}}$]

Shaft A positions as before
Force source preload
[$\mathbf{x}, \mathbf{y}, \theta_{\mathbf{z}}$]
l.e. magnets, cams, etc..

"Premium" adjustment (sub-micron)

Run-out is a major cause of error
Air bushings for lower run-out Seals keep contaminants out
Dual motion actuators provide:

- Linear motion
- Rotary motion

Mechanical interface wear management

Wear and particle generation are unknowns. Must investigate:

- Coatings [minimize friction, maximize surface energy]
- Surface geometry, minimize contact forces
\odot Alternate means of force/constraint generation
At present, must uncouple before actuation

PARTIAL CONSTRAINT

Motivated by coupling envy......

Adding and taking away constraints

It may be helpful to add/remove DOF in coupling applications
For instance, KCs can not form seals
\odot We can add compliance to KCs to allow this to happen
\odot This is equivalent to adding a Degree of Freedom

Care must be taken to make sure

- compliant direction is not in a sensitive direction
- Parasitic errors in sensitive directions are acceptable

Stiffness ratio

Actuation loads should be:

\odot Applied through center of stiffness

- In compliant direction

Error loads are often proportional to applied loads
 - Example: Bolt head friction
 $\odot T_{B} \sim F_{B} R_{B} \mu$
 \odot Design for $k_{\text {sensitive }} \gg k_{\text {non-sensitive }}$

Practical metric is stiffness ratio:

Stamped compliant kinematic couplings

Integral spring compliant kinematic couplings

$\begin{array}{lr}\text { Characteristics } \\ \text { 1. Repeatability } & (2.5 \text { micron }) \\ \text { 2. Stroke } & \sim 0.5 \text { inches } \\ & \\ \text { Applications/Processes }\end{array}$

1. Assembly
2. Casting
3. Fixtures

Design Issues (flexures)

1. $\mathrm{K}_{\mathrm{r}}=\frac{\mathrm{K}_{\text {guide }}}{\mathrm{K}_{\text {spring }}}$
2. Press fit tolerances

Cost
\$ 2000

Plastic compliant kinematic couplings

Characteristics

1. 180 microns
2. ~ 0.125 inches
3. 1 Time Use

Applications/Processes

1. Sand Casting

Design Issues

1. Loose Sand
2. K_{r} application specific

Cost

1. Modify Pattern
2. Purchase Balls
3. Tie Rods

Experimental results

USING CONSTRAINTS IN MECHANISM DESIGN

Alternatives to motion with physical contact

Problems you can not avoid with contact:

- Surface topology (finish)
- Wear and Fretting
- Friction
- Limited resolution, at best on order of microns....

Wear on Groove

Next generation applications require nanometer level fixtures, i.e.:

- Fiber optics

๑ Photolithography

Compliant mechanisms:

- Mechanical reduction to interface with larger scale actuators
- Motion through strain
- Small and moderately sized motions in comparison to mechanism size
- Can be made to emulate machines

Compliant mechanism examples

University of Michigan: Prof. Sridhar Kota
\odot http://www.engin.umich.edu/labs/csdl/index.htm

Why compliant mechanisms in precision fixtures

- Repeatable/low hysteresis
- No assembly
\odot No contact

© 2001 Martin Culpepper

Constraint based compliant mechanisms

High volume, low cost, multi-degree of freedom alignment Example 3 DOF flexure system:
Target applications: Opto-electronic packaging/alignment

Constraint based compliant mechanisms cont.

Constraint based compliant mechanisms cont.

Example 6 DOF alignment capability

Target app.: Micro and meso scale positioning (l.e. opto-electronics)

Constraint based compliant mechanisms cont.

Example 6 DOF alignment capability

Target app.: Micro/meso scale positioning (I.e. opto-electronics)

Constraint based compliant mechanisms cont.

3 DOF active alignment $[x, y, z]$ \& 2 DOF passive alignment $\left[z, \theta_{y}\right.$] Good fit for wire-EDM (stacked sheets) ~ order of \$1-10

Constraint based compliant mechanisms cont.

Plastic deformation can be utilized for position keeping Device should be potted in place to avoid stress relief

Initial position

Plastically flexed

Constraint based compliant mechanisms cont.

Static or flexible kinematic coupling
Components biased toward each other
Flexure takes up bias, provides mating force in z direction

