2.75 CONSTRAINT LECTURE

Design of Constraints in Precision Systems

Background

- **⊙** History
- Reasons
- Requirements
- Problems

Classes of Constraint

- Kinematic
- ⊙ Quasi-Kinematic
- Variable Geometry
- Partial/Compliance

Hardware/discussion time

Elastic Averaging will be done next lecture

Common Coupling Methods

Elastic Averaging Non-Deterministic

Pinned Joints No Unique Position

Kinematic Couplings Kinematic Constraint

Flexural Kin. Couplings Kinematic Constraint

Quasi-Kinematic Couplings Near Kinematic Constraint

	0.01 µm	0.10 µm	1.0 µm	10 µm	100 µm
Pinned Joints					
Flexural Kinematic Couplings					
Elastic Averaging					
Quasi-Kinematic Couplings					
Kinematic Couplings					

Perspective: What the coupling designer faces...

APPLICATION	<u>SYSTEM SIZE</u>	<u>REQ'D PRECISION</u>
Fiber Optics	Meso	Nano
Optical Resonators	Meso	Nano
Large array telescopes	60 ft diam.	Angstrom
Automotive	3 ft	1 micron

Problems due to strain affects

0	Thermal Affects	Air, hands, sunlight
•	Gravity	Sagging
•	Stress Relief	Time variable assemblies
•	Loads	Stiffness

Problems due to sub-optimal designers

- Competing cost vs performance
- Automotive (no temperature control, large parts, resistance to change)

General Service Requirements & Applications

Ideal couplings:

- **⊙** Inexpensive
- Accurate & Repeatable
- High Stiffness
- Handle Load Capacity
- Sealing Interfaces
- Well Damping

Example Applications:

- Grinding
- Optic Mounts
- Robotics
- Automotive

Sensitivity

• What are the sensitive directions?!?!?!?

Couplings Are Designed as Systems

You must know what is going on (loads, environment, thermal)!

Shoot for determinism or it will "suck to be you"

KINEMATIC COUPLINGS

The good, the bad, the ugly....

Exact Constraint (Kinematic) Design

Exact Constraint: Number of constraint points = DOF to be constrained

These constraints must be independent!!!

Assuming couplings have rigid bodies, equations can be written to describe movements

Design is deterministic, saves design and development \$

KCs provide repeatability on the order of parts' surface finish

- 1/4 micron repeatability is common
- Managing contact stresses are the key to succe

Making Life Easier

"Kinematic Design", "Exact Constraint Design".....the issues are:

- KNOW what is happening in the system
- Manage forces and deflections
- Minimize stored energy in the coupling
- Know when "Kinematic Design" should be used
- Know when "Elastic Averaging" should be used (next week)

Kelvin Clamp

Boyes Clamp

Kinematic couplings

Kinematic Couplings:

- Deterministic Coupling
- **# POC = # DOF**
- Do Not Allow Sealing Contact
- Excellent Repeatability

Performance

 0.01 μm
 0.10 μm
 1.0 μm
 10 μm

 Pinned Joints
 Elastic Averaging
 10 μm
 10 μm

 Quasi-Kinematic Couplings
 10 μm
 10 μm
 10 μm

Modeling Kinematic Coupling Error Motions

Hertzian Point Contact for Local Displacements

 $\delta_i = \textit{f}(\mathsf{E}_\mathsf{B},\,\mathsf{E}_\mathsf{G},\,\mathsf{v}_\mathsf{B},\,\mathsf{v}_\mathsf{G},\,\mathsf{R}_\mathsf{B},\,\mathsf{R}_\mathsf{G})$

KC Error Motion Analysis

Need δ_x , δ_y , δ_z , ε_x , ε_y , ε_z to predict effect of non-repeatability Hertz deflections -> displacements of ball centers Three ball centers form a plane Analyze relative position of "before" and "after" planes for error motions

Final Positions

Kinematic Couplings and Distance of Approach

How do we characterize motions of the ball centers?

© 2001 Martin Culpepper

Max shear stress occurs below surface, in the member with larges R

Contact Mechanics – Hertz Contact

Heinrich Hertz – 1st analytic solution for "near" point contact

KC contacts are modeled as Hertz Contacts

Enables us to determine stress and distance of approach, δ_n

Key Hertz Physical Relations

Equivalent radius and modulus:

R. =		1			_	1	
' ve	1+	1_ +	1_+	1	$E_e = $	12	4
	R1	R1	R2	R2		<u>1 - η</u> +	<u>1 - η</u>
	rmajor	iminor	2major	2 minor		E₁	E2

 $\cos(\theta)$ function (ϕ is the angle between the planes of principal curvature of the two bodies)

 η_2^2

$$\cos \vartheta = \mathsf{R}_{\mathsf{e}} \left[\left(\frac{1}{\mathsf{R}_{1\mathsf{major}}} - \frac{1}{\mathsf{R}_{1\mathsf{minor}}} \right)^2 + \left(\frac{1}{\mathsf{R}_{2\mathsf{major}}} - \frac{1}{\mathsf{R}_{2\mathsf{minor}}} \right)^2 + 2 \left(\frac{1}{\mathsf{R}_{1\mathsf{major}}} - \frac{1}{\mathsf{R}_{1\mathsf{minor}}} \right) \left(\frac{1}{\mathsf{R}_{2\mathsf{major}}} - \frac{1}{\mathsf{R}_{2\mathsf{minor}}} \right) \cos 2\varphi \right]^{1/2}$$

Solution to elliptic integrals estimated with curve fits

 $\alpha = 1.939e^{-5.2\Theta} + 1.78e^{-1.09} + 0.723/\theta + 0.221$

 $\beta = 35.228e^{-0.989} - 32.424e^{-1.0475} + 1.4869 - 2.634$

 $\lambda = -0.214 e^{-4.95} - 0.179 \theta^2 + 0.555\theta + 0.319$

Contact Pressure	Distance of	Major Contact	Minor Contact
	Approach	Axis	Axis
$q = \frac{3F}{2\pi cd} \approx 1.5\sigma_{\text{tensile for metals}}$	$\delta = \lambda \left(\frac{2F^2}{3R_{e}E_{e}^2}\right)^{1/3}$	$c = \alpha \frac{3FR_e}{2E_e}^{1/3}$	β <u>3FR</u> ^{1/3} 2E _e

KEY Hertz Relations

Contact Pressure is proportional to:

- Force to the 1/3rd power
- Radius to the -2/3rd power
- Modulus to the 2/3rd power

Distance of approach is proportional to:

- Force to the 2/3rd power
- Radius to the -1/3rd power
- Modulus to the -2/3rd power

Contact ellipse diameter is proportional to:

- Force to the 1/3rd power
- Radius to the 1/3rd power
- ◎ Modulus to the –1/3rd power

DO NOT ALLOW THE CONTACT ELLIPSE TO BE WITHIN ONE DIAMETER OF THE EDGE OF A SURFACE!

Calculating Errors Motions in Kinematic Couplings

Motion of ball centers -> Centroid motion in 6 DOF -> Δx , Δy , Δz at X, Y, Z

• Coupling Centroid Translation Errors

$$\delta \zeta_{c} = \left(\frac{\delta_{1}\zeta}{L_{1c}} + \frac{\delta_{2}\zeta}{L_{2c}} + \frac{\delta_{3}\zeta}{L_{3c}}\right) \cdot \frac{L_{1c} + L_{2c} + L_{3c}}{3}$$

• Rotations

$$\varepsilon_{x} = \frac{\delta_{z1}}{L_{1}, 23} \cdot \cos(\theta_{23}) + \frac{\delta_{z2}}{L_{2}, 31} \cdot \cos(\theta_{31}) + \frac{\delta_{z3}}{L_{3}, 12} \cdot \cos(\theta_{12})$$

$$\varepsilon_{y} = \frac{\delta_{z1}}{L_{1}, 23} \cdot \sin(\theta_{23}) + \frac{\delta_{z2}}{L_{2}, 31} \cdot \sin(\theta_{31}) + \frac{\delta_{z3}}{L_{3}, 12} \cdot \sin(\theta_{12})$$

$$\varepsilon_{z1} = \frac{\sqrt{(\alpha_{B1} \cdot \delta_{1} + \alpha_{B2} \cdot \delta_{2})^{2} + (\beta_{B1} \cdot \delta_{1} + \beta_{B2} \cdot \delta_{2})^{2}}}{\sqrt{(x_{1} - x_{c})^{2} + (y_{1} - y_{c})^{2}}} \cdot \text{SIGN}(\alpha_{B1} \cdot \delta_{1} - \alpha_{B2} \cdot \delta_{2}) \longrightarrow \varepsilon_{z} = \frac{\varepsilon_{z1} + \varepsilon_{z2} + \varepsilon_{z3}}{3}$$

• Error At X, Y, Z (includes translation and sine errors)

$$\begin{pmatrix} \Delta_{\mathbf{X}} \\ \Delta_{\mathbf{y}} \\ \Delta_{\mathbf{z}} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & -\varepsilon_{\mathbf{z}} & \varepsilon_{\mathbf{y}} & \delta_{\mathbf{X}} \\ \varepsilon_{\mathbf{z}} & 1 & -\varepsilon_{\mathbf{x}} & \delta_{\mathbf{y}} \\ -\varepsilon_{\mathbf{y}} & \varepsilon_{\mathbf{x}} & 1 & \delta_{\mathbf{z}} \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mathbf{X} - \mathbf{x}_{\mathbf{c}} \\ \mathbf{Y} - \mathbf{y}_{\mathbf{c}} \\ \mathbf{Z} - \mathbf{z}_{\mathbf{c}} \\ 1 \end{pmatrix} - \begin{pmatrix} \mathbf{X} - \mathbf{x}_{\mathbf{c}} \\ \mathbf{Y} - \mathbf{y}_{\mathbf{c}} \\ \mathbf{Z} - \mathbf{z}_{\mathbf{c}} \\ 1 \end{pmatrix}$$

Kinematic Coupling Centroid Displacement

General Design Guidelines

- 1. Location of the coupling plane is important to avoid sine errors
- 2. For good stability, normals to planes containing contact for vectors should bisect angles of coupling triangle
- 3. Coupling triangle centroid lies at center circle that coincides with the three ball centers
- 4. Coupling centroid is at intersection of angle bisectors
- 5. These are only coincident for equilateral triangles
- 6. Mounting the balls at different radii makes crash-proof
- 7. Non-symmetric grooves make coupling idiot-proof

Sources of Errors in KCs

Problems With Physical Contact (and solutions)

Surface topology (finish):

- \odot 50 cycle repeatability ~ 1/3 μ m Ra
- Friction depends on surface finish!
- Finish should be a design spec
- Surface may be brinelled if possible

Mate n

Mate n + 1

Wear and Fretting:

- High stress + sliding = wear
- Metallic surfaces = fretting
- $\odot~$ Use ceramics if possible (low μ and high strength)
- Dissimilar metals avoids "snowballing"

Friction:

- \odot Friction = Hysteresis, stored energy, overconstraint
- Flexures can help (see right)
- Lubrication (high pressure grease) helps
 - Beware settling time and particles
- Tapping can help if you have the "magic touch"

© 2001 Martin Culpepper

Ball in V-Groove with Elastic Hinges

Experimental Results – Repeatability & Lubrication

Practical Design of Kinematic Couplings

Design

- Specify surface finish or brinell on contacting surfaces
- Normal to contact forces bisect angles of coupling triangle!!!

Manufacturing & Performance

- Repeatability = f (friction, surface, error loads, preload variation, stiffness)
- Accuracy = f (assembly) unless using and ARKC

Precision Balls (ubiquitous, easy to buy)

• Baltec sells hardened, polished kinematic coupling balls or.....

Grooves (more difficult to make than balls)

• May be integral or inserts. Inserts should be potted with thin layer of epoxy

Materials

- Ceramics = low friction, high stiffness, and small contact points
- If using metals, harden
- Use dissimilar materials for ball and groove

Preparation and Assembly

- Clean with oil mist
- Lubricate grooves if needed

Example: Servo-Controlled Kinematic Couplings

Location & automatic leveling of precision electronic test equipment Teradyne has shipped over 500 systems

Example: Canoe-Ball Kinematic Interface Element

The "Canoe Ball" shape is the secret to a highly repeatable design

- It acts like a ball 1 meter in diameter
- It has 100 times the stiffness and load capacity of a *normal* 1" ball

Large, shallow Hertzian zone is very (i.e. < 0.1 microns) repeatable

Canoe Ball Repeatability Measurements

Test Setup

Why do it the easy way when you can do it the lazy way?

Details of QKC Element Geometry

PAIRS OF QKC ELEMENTS

QKC Methods vs Kinematic Method

Contact Mechanics

MECHANICS:

- Use Rotating Coordinate System
- Assume Sinusoidal Normal Distance of Approach
- Obtain Contact Stress Profile as Function of Above
- Integrate Stress Profile in Rotating CS thru contact

Example: Duratec Assembly

Characteristics:

- Ford 2.5 & 3.0 L V6
- > 300,000 Units / Year
- Cycle Time: < 30 s

Rough Error Budget

	0.01 µm	0.10 µm	1.0 µm	10 µm
Pinned Joints				
Elastic Averaging			•	
Quasi-Kinematic Couplings				
Kinematic Couplings				

Example: Assembly of Duratec Block and Bedplate

COMPONENTS

Bearing Assemblies in Engines

Results of Duratec QKC Research

MANUFACTURING:

Engine Manufacturing Process With Pinned Joint

Modified Engine Manufacturing Process Using Kinni-Mate Coupling

Op. #10 • Mill Joint Face • Drill/Bore 3 Peg Holes • Drill Bolt Holes & Form 3 Conical Grooves	}	Op. #30 • Drill Bolt Holes	•	Op. #50 • Press 3 Pegs in BP • Assemble • Load Bolts • Torque Bolts	→	Op. #100 • Semi-finish crank bores • Finish crank bores
---	----------	-------------------------------	---	---	----------	--

DESIGN:

ITEM	QKC	Pinned Joints
# Precision Pieces	3	8
# Precision Features	3	16
Feature Placement Tolerance	+/- 0.08mm	+/- 0.04mm
Average Centerline Repeatability	0.65 µm	4.85 μm
Normalized \$/Engine	0.64	1

Engine Assembly Performance