MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72Elements of Mechanical Design Lecture 16: Dynamics and damping

Schedule and reading assignment

Quiz

□ None

Topics

- Vibration physics
- Connection to real world
- Activity

Reading assignment

□ Skim last gear reading assignment... (gear selection)

Resonance

Basic Physics

- Exchange potential-kinetic energy
- □ Energy transfer with loss

Modeling

- □ 2nd order system model
- □ Spring mass damper
- Differential equations, Laplace
 Transforms

Why Do We Care

- Critical to understanding motion of structures- desired and undesired
- Generally not steady state
- □ Location error
- □ Large forces, high fatigue

Vibrations - Input

Oscillation of System

Why Categorize

- Different causes
- Different solutions

Input Form

- □ Forced Steady State
 - Command Signal
 - Electrical (60 Hz)
- □ Free Transient
 - Impacts

Vibrations - Source

Source 10⁻⁹**4** Undriven Disturbance 10-13-Disturbance • Driven 10-17 -**Device Motors** Spectrum **Rotating Components** $10^2 \ 10^4$ 10-2 1 • Undriven Electrical (60 Hz) People (2 Hz) Cars (10 Hz) Driven Disturbance Nearby Equipment Command • Step Response **System** Vibration Response Command

Vibrations: Command vs. Disturbance

Vibrations - Example

Example

- □ Chinook
- □ Identify:
 - Mode
 - Form
 - Source
 - Response

Attenuating Vibrations

Change System

- □ Mass, stiffness, damping
- □ Adjust mode shapes

Change Inputs

- Command: Input Modulation, Feedback
- Disturbance, reduce:
 - undriven vibrations, e.g. optical table
 - driven vibrations alter device structure (damping on motors, etc.)

Modulating Command Vibrations

Behavior

Regimes

- □ (1) Low Frequency ($\omega < \omega_n$)
- □ (2) Resonance ($\omega \approx \omega_n$)
- □ (3) High Frequency ($\omega > \omega_n$)
- □ Example Spring/Mass demo

Figure by MIT OpenCourseWare.

$$\frac{x}{F} = \frac{1}{ms^2 + bs + k} = \frac{1}{k(\omega)}$$

Behavior – Low Frequency

Frequency Response Regimes

- **(**1) Low Frequency ($\omega < \omega_n$)
- □ (2) Resonance ($\omega \approx \omega_n$)
- **(**3) High Frequency $(\omega > \omega_n)$
- □ Example Spring/Mass demo

Low Frequency ($\omega < \omega_n$)

System tracks commands

$$\frac{x}{F} \approx \frac{1}{k}$$

10

- Ideal operating range
 High disturbance rejection
- High disturbance rejection

Resonance Frequency (ω≈ω_n)

- System Response >> command
- $\square \quad k_{eff} \downarrow$
- Disturbances will cause very large response
- Quality factor = magnitude of peak
- □ Damping $\uparrow = Q \downarrow$

High Frequency (ω≈ω_n)

- □ System Response << command
- High disturbance rejection

$$F ms^2 + bs + k$$

10

Behavior - Resonance

Frequency Response Regimes

- \Box (1) Low Frequency ($\omega < \omega_n$)
- (2) Resonance ($\omega \approx \omega_n$)
- \Box (3) High Frequency ($\omega > \omega_n$)
- Example Spring/Mass demo

Low Frequency ($\omega < \omega_n$)

- System tracks commands
- Ideal operating range
- High disturbance rejection

Resonance Frequency (\omega \approx \omega_n) $\frac{1}{k} < \frac{x}{F_1} \le \frac{Q}{k}$

□ k_{eff} ↓

- □ Disturbances will cause very large response
- □ Quality factor = magnitude of peak
- Damping $\uparrow = Q \downarrow$

High Frequency (ω≈ω_n)

- □ System Response << command
- High disturbance rejection

Figure by MIT OpenCourseWare.

$$\frac{x}{F} = \frac{1}{ms^2 + bs + k}$$

Behavior – High Frequency

Frequency Response Regimes

- $\label{eq:constraint} \square \quad (1) \ Low \ Frequency \ (\omega{<}\omega_n)$
- □ (2) Resonance ($\omega \approx \omega_n$)
- **(**3) High Frequency $(\omega > \omega_n)$
- Example Spring/Mass demo

Low Frequency ($\omega < \omega_n$)

- System tracks commands
- Ideal operating range
- High disturbance rejection

Resonance Frequency (ω≈ω_n)

- System Response >> command
- $\square \quad k_{eff} \downarrow$

Disturbances will cause very large response

Quality factor = magnitude of peak

□ Damping $\uparrow = Q \downarrow$

High Frequency (ω≈ω_n)

- System Response << command</p>
- Poor disturbance rejection

Figure by MIT OpenCourseWare.

$$\frac{x}{F} = \frac{1}{ms^2 + bs + k}$$

Constitutive Relations

Relevant equations

Application of Theory

Relate Variables to Actual Parameters

- Vibrational Mode
- □ Mass
- Stiffness
- Damping

Transfer between Model and Reality

- □ Iterative
- □ Start simple (1 mass, 1 spring)
- □ Add complexity
- □ Limits

Example – building (video)

Strategies for damping

Material

Pros and cons of each

- Grain boundary
- □ Internal lattice
- □ Viscoelastic (elastomers/goo)

Viscous

- 🗆 Air
- □ Fluid

Electromagnetic

Friction

Active

Combinations

Example: Couette flow relationships

Relevant equations

Exercise (see next page too)

Perform a frequency analysis of the part

- Develop & prove (FEA) how to increase nat. freq. via geometry change
- □ Any constraints you might have? Geometry changes can't be unbounded
- Explain effect of your change on vibration amplitude (relative to outer base) at given ω, via sketches & plots

Xtra credit, assume:

- □ Flexure is contained between two parallel plates (on top and bottom)
- Viscous air damping in the gaps on both sides
- □ 1 micron gap between the flexure sides and plates
- □ Elaborate on how well flexure is damped (don't just use intuition)

Useful equations (c = damping coefficient, k = stiffness, m = mass)

Flexure

Multiple Resonances

