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2.72

Elements of 


Mechanical Design


Lecture 12:

Belt, friction, gear drives




Schedule and reading assignment 
Quiz 

� Bolted joint qualifying Thursday March 19th 

Topics 
� Belts


� Friction drives


� Gear kinematics


Reading assignment 
• Read: 

14.1 – 14.7 

• Skim: 
Rest of Ch. 14 
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Topic 1: 


Belt Drives




Belt Drives 
Why Belts? 

� Torque/speed conversion


� Cheap, easy to design


� Easy maintenance


� Elasticity can provide damping, shock absorption

Image by dtwright on Flickr. 

Keep in mind 
� Speeds generally 2500-6500 ft/min


� Performance decreases with age


Image by v6stang on Flickr. 
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Images removed due to copyright restrictions.
Please see:

http://www.tejasthumpcycles.com/Parts/primaryclutch/3.35-inch-harley-Street-Belt-Drive.jpg
http://www.al-jazirah.com.sa/cars/topics/serpentine_belt.jpg

http://www.flickr.com/photos/dtwright/3320385578/
http://www.flickr.com/photos/v6stang/2933779776/
http://www.tejasthumpcycles.com/Parts/primaryclutch/3.35-inch-harley-Street-Belt-Drive.jpg
http://www.al-jazirah.com.sa/cars/topics/serpentine_belt.jpg


Belt Construction and Profiles 
Many flavors 

� Flat is cheapest, natural clutch 
� Vee allows higher torques 
� Synchronous for timing 

Usually composite structure 
� Rubber/synthetic surface for friction 
� Steel cords for tensile strength 
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Belt Drive Geometry 

Driven 


Slack Side 

Tight Side 

Driving 
Pulley 

Pulley 

ω1 
ω2 

d1 

d2 

vbelt 
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Belt Drive Geometry 

θ1 

θ2 

dspan 

dcenter 
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Contact Angle Geometry 

θ1 

θ2 

dspan 

dcenter 

ω1 ω2 
d1 

d2 

θ1 =π −2sin−1 
⎜⎜
⎛ d2 −d1 

⎟⎟
⎞ 

θ2 =π +2sin−1 
⎜⎜
⎛ d2 −d1 

⎟⎟
⎞ 

⎝ 2dcenter⎠ ⎝ 2dcenter⎠ 
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Belt Geometry 

θ1 

θ2 

dspan 

dcenter 

ω1 ω2 
d1 

d2 

2 2 1d = 2 2 1
2(d1θ1 +d2θ2 )4dcenter−(d2 −d1) +span dcenter−⎜

⎛ d −d 
⎟
⎞

2 

Lbelt = 
⎝ 2 ⎠ 
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Drive Kinematics 

θ1 

θ2 

dspan 

dcenter 

ω1 ω2 
d1 

d2 

vb = 
d 
2

1 ω1 = 
d 
2

2 ω2


d1 =
ω2


d2 ω1
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Elastomechanics 
Elastomechanics → torque transmission 

� Kinematics → speed transmission 

Link belt preload to torque transmission 
� Proceeding analysis is for flat/round belt 

Driven 

Slack Side 

Tight Side 

Driving 
Pulley 

Pulley 

ω1 
ω2 

d1 

d2 

vbelt 
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Free Body Diagram 

y 

x
dS 

F 

F+dF 

dθ 

dN 

μdN 

d/2 

•Tensile force (F) 

•Normal force (N) 

•Friction force (μN) 

•Centrifugal force (S) 
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Force Balance 

d/2 

dθ 

dN 

μdN 

F 

Using small angle approx: 

F+dF 
ΣFy = 0 = −(F + dF) dθ − F dθ

+ dN + dS 
2 2 

Fdθ = dN + dS 

ΣFx = 0 = −μdN − F + (F + dF) 
μdN = dF 

y 

dS x 
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Obtaining Differential Eq 

d/2 

dθ 

dN 

μdN 

F


Let m be belt mass/unit length 

F+dF dS = m⎜⎛ 
d 
⎟
⎞

2 

ω2dθ 
⎝ 2⎠ 

Combining these red eqns: 

dF = μFdθ − μm ⎛⎜ 
d ⎞
⎟ 

2 

ω 2dθ 
⎝ 2 ⎠ 

y 

dS x 

dF 
− μF = −μm ⎛⎜ 

d ⎞
⎟ 

2 

ω 2 

dθ ⎝ 2 ⎠ 
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Belt Tension to Torque 
Let the difference in tension between the loose side (F2) and the 
tight side (F1) be related to torque (T)

TF − F =	

T 

F11 2 d 
2 

Solve the previous integral over contact angle and apply F1 and 
F2 as b.c.’s and then do a page of algebra: 

contact F2T eμθ + 1 
=Ftension d eμθcontact − 1 

2 μθcontact 

F1 = m ⎛⎜ 
d ⎞
⎟ ω 2 + Ftension 

2 
μθ 

e
contact⎝ 2 ⎠ e + 1 Used to find stresses 

in belt!!! 
⎛ d ⎞ 

2
2	 2F2 = m	⎜ ⎟ ω + Ftension

⎝ 2 ⎠ eμθcontact + 1 
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Practical Design Issues 
Pulley/Sheave profile 

� Which is right? 

Manufacturer → lifetime eqs 
� Belt Creep (loss of load capacity) 
� Lifetime in cycles 

Idler Pulley Design 
� Catenary eqs → deflection to tension 
� Large systems need more than 1 

A B C 

Images by v6stang on Flickr. 
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IDL

Idler

ALT

Water
pump
& fan

Crank

P/S

Idler

Figure by MIT OpenCourseWare.

http://www.flickr.com/photos/v6stang/2933779776/


Practice problem 
Delta 15-231 Drill Press


� 

� 

� 

� 

� 

� 

1725 RPM Motor (3/4 hp)

450 to 4700 RPM operation


Assume 0.3 m shaft separation


What is max torque at drill bit?


What size belt?


Roughly what tension?


Images removed due to copyright restrictions. Please see 
http://www.rockler.com/rso_images/Delta/15-231-01-500.jpg 
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Topic 2: 


Friction Drives




Friction Drives 
Why Friction Drives? 

� Linear ↔ Rotary Motion 
� Low backlash/deadband 
� Can be nm-resolution 

Keep in mind 
� Preload → bearing selection 
� Low stiffness and damping 
� Needs to be clean 
� Low drive force 

Images removed due to copyright restrictions. Please see 

http://www.beachrobot.com/images/bata-football.jpg 
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http://www.borbollametrology.com/PRODUCTOS1/Wenzel/
WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg

http://www.beachrobot.com/images/bata-football.jpg
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Friction Drive Anatomy 

Transmission/Coupling 

Drive Bar 

Motor and 

Drive Roller 

Concerned with: 

•Linear Resolution 

•Output Force 
Backup


•Max Roller Preload Rollers 
•Axial Stiffness 
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Drive Kinematics/Force Output 
Kinematics found from no slip cylinder on flat


Δδbar = Δθ ⋅ dwheel 

2 

v =ω 
dwheel Δδ


dwheel 

Δθ 

bar wheel
 2 

Force output found from static analysis 
� Either motor or friction limited 

Foutput = 
2Twheel where Foutput ≤ μFpreloaddwheel 
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Maximum Preload 
1 

1 

2 

1 
− 

⎟
⎟ 
⎟ 

⎠ 

⎞ 

⎜
⎜ 
⎜ 

⎝ 

⎛ 
+= 

crownwheel 
e rdR 

3 
1 

2 
3 

⎟⎟ 
⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ 
= 

e 

epreload 
contact E 

RF 
a 

122 11 
− 

⎟⎟ 
⎠ 

⎞ 
⎜⎜ 
⎝ 

⎛ −
+

− 
= 

bar 

bar 

wheel 

wheel 
e EE

E νν 

( ) ( )⎟ 
⎠ 
⎞

⎜ 
⎝ 
⎛ +⋅+⋅+
+ 

= wheelwheel 
wheel 

e 

econtact 
wheel R 

Ea ννν 
π

τ 121 
9 
2 

2 
21 

2 

2 
3 

max 
yσ

τ = 

For metals: 

Variable Definitions 

Shear Stress Equation 

16π 3τ 3 R2

max e
Fpreload , max = 3


3Ee 
2 ⎛⎜

1+ 2ν wheel + 
2 
⋅ (1+ν wheel )⋅
 2(1+ν wheel )⎟⎞ 

⎝ 2 9 ⎠ 
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Axial Stiffness 
−1

⎛ ⎞
⎜ ⎟ 4aeEe
⎜ 1 1 1 1 ⎟ ktangential = kaxial = ⎜ k 

+ ktorsion 
+ 

k 
+ 

k ⎟ (2 −ν )(  1+ν ) 
⎜ shaft 

2 
tangential bar ⎟

⎝ dwheel ⎠ 43πEd shaftk shaft = 
4 L3 

4πGd wheelk torsion = 
32 L 

k = 
EA c , bar 

bar L 
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Friction Drives 
Proper Design leads to 

� Pure radial bearing loads


� Axial drive bar motion only


Drive performance linked to motor/transmission 
� Torque ripple


� Angular resolution


Images removed due to copyright restrictions. Please see 

http://www.borbollametrology.com/PRODUCTOS1/Wenzel/WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg 
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Topic 3: 

Gear Kinematics 



Gear Drives 
Why Gears? 

� Torque/speed conversion 
� Can transfer large torques 
� Can run at low speeds 
� Large reductions in small package 

Keep in mind 
� Requires careful design 
� Attention to tooth loads, profile 

Image from robbie1 on Flickr. 

Image from jbardinphoto on Flickr. 

Images removed due to copyright restrictions. Please see 
http://elecon.nlihost.com/img/gear-train-backlash-and-contact-pattern-checking.jpg 

http://www.cydgears.com.cn/products/Planetarygeartrain/planetarygeartrain.jpg 

© Martin Culpepper, All rights reserved 26 

http://www.flickr.com/photos/robbie1/4644315
http://www.flickr.com/photos/jbardin/3237282835/
http://elecon.nlihost.com/img/gear-train-backlash-and-contact-pattern-checking.jpg
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Gear Types and Purposes 
Spur Gears 

� Parallel shafts 
� Simple shape → easy design, low $$$ 
� Tooth shape errors → noise 
� No thrust loads from tooth engagement 

Helical Gears 
� Gradual tooth engagement → low noise 
� Shafts may or may not be parallel 
� Thrust loads from teeth reaction forces 
� Tooth-tooth contact pushes gears apart 

Images from Wikimedia Commons, http://commons.wikimedia.org 

© Martin Culpepper, All rights reserved 27 

http://commons.wikimedia.org


Gear Types and Purposes 
Bevel Gears 

� Connect two intersecting shafts

� Straight or helical teeth


Worm Gears 
� Low transmission ratios

� Pinion is typically input (Why?)

� Teeth sliding → high friction losses


Rack and Pinion 
� Rotary ↔ Linear motion Images from Wikimedia Commons, http://commons.wikimedia.org 

� Helical or straight rack teeth 
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k

F (t)

k

Viscous damping, c

Rack, m1

Pinion, m2

+
b

a

Figure by MIT OpenCourseWare.

Rack & Pinion


http://commons.wikimedia.org


Tooth Profile Impacts Kinematics 
Want constant speed output 

� Conjugate action = constant angular velocity ratio 
� Key to conjugate action is to use an involute tooth profile 

Output speed of gear train


time [sec] 

ωout, [rpm] 

“Ideal” involute/gear 

Non or poor involute 

“Real” involute/gear 
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Instantaneous Velocity and Pitch 
Model as rolling cylinders (no slip condition):


v v =ωv 1 × 
v r1 =ω

v 
2 × 

v r2	

ω1 = 
r2 

ω2 r1 

Model gears as two pitch circles 
� Contact at pitch point 

r1 

ω1 

ω2r2r1 

ω1 

ω2 

v 

Pitch Circles Meet @ Pitch Pt. 

r2 
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Instantaneous Velocity and Pitch 
Meshing gears must have same pitch 

-Ng = # of teeth, Dp = Pitch circle diameter 

Ng
Diametral pitch, PD: PD = 

Dp 

Circular pitch, PC: PC = 
πDp = 

π 

Ng PD 
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Drawing the Involute Profile 

Φ 
Pitch Point 

Base Circle 

Pitch Circle 

DP/2 

DB/2 

•Gear is specified by 
diametral pitch and 
pressure angle, Φ 

Images from Wikimedia Commons, http://commons.wikimedia.org 

Image removed due to copyright restrictions. Please see 
http://upload.wikimedia.org/wikipedia/commons/c/c2/Involute_wheel.gif 

© Martin Culpepper, All rights reserved 32 

Φ= cosPB DD

http://commons.wikimedia.org
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Drawing the Involute Profile 

θΔ= 
2 

B 
n 

D nL 

DB/2 

1 
23 

Pitch Point 
Pitch Circle 

Base Circle 

L3 

L2 

L1 



Transmission Ratio for Serial Gears 

Transmission ratio for elements in series: TR = (proper sign)⋅ ωout


ωin


From pitch equation: P1 = 
N1 = 

N2 = P2 
D1 N1 ω2= = 

D1 D2 D2 N2 ω1 

For Large Serial Drive Trains: 

Gear trainPower in: Tin y ωin 

Power out: Tout y ωout 

11 2 

TR = (proper sign)⋅ Productof drivingteeth 
Productof driven teeth 
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Transmission Ratio for Serial Gears 
Serial trains: TR = ( proper sign)⋅ Product of driving teeth 

Product of driven teeth 
Example 1: 

TR = ? 

in out 

Example 2: 
driven 

drive 

driven 

drive 
driven 

drive 

TR = ? 

in out 
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Transmission Ratio for Serial Gears 
Example 3: Integral gears in serial gear trains 

� What is TR?  Gear 1 = input and 5 = output 

TR = (proper sign)⋅ Product of driving teeth 
Product of driven teeth 

Gear - 1

N1 = 9


Gear - 2

N2 = 38


Gear - 3

N3 = 9


Gear - 4

N4 = 67


4 

1 

5 

3 

2 

Gear - 5

N5 = 33
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ω
2

Planetary Gear Trains 
Planetary gear trains are very common 

� Very small/large TRs in a compact mechanism 

Terminology: 

Planet Planet 
Ring Planet gear gear 
gear Arm 

Planet 
Arm 

PlanetSun 
gear gear 
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Planetary Gear Train Animation 
How do we find the transmission 

ratio? 

Image removed due to copyright restrictions. Please see 
http://www.cydgears.com.cn/products/Planetarygeartrain/ 
planetarygeartrain.jpg 

Sun 

Ring 
gear 

Planet 
gear 

Arm 

Tr
ai

n 
1 

Sun 

Ring 
gear 

Planet 
gear 

Arm 

Tr
ai

n 
2 
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Planetary Gear Train TR 

Sun Gear 

Planet Gear 

Arm 

If we make the arm 
stationary, than this is 
a serial gear train:Ring Gear 

ωra ωring −ωarm= = TR

ω ω −ωsa sun arm 

Nsun N planet NsunTR = − ⋅ = −

N planet Nring Nring 

ω pa =
ω planet −ωarm = TR

ωsa ωsun −ωarm 
NsunTR = − 

N planet 
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Planetary Gear Train Example 
If the sun gear is the 
input, and the ring 
gear is held fixed:Ring Gear 

ω 0 −ωra arm= = TR
ω ω −ωsa sun arm 

Nsun N planet NsunTR = − ⋅ = −
N planet Nring Nring 

TRω =ω = ωoutput arm sunTR −1 

Sun Gear 

Planet Gear 

Arm 
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Case Study: Cordless Screwdriver 
Given: Shaft TSH (ωSH) find motor TM (ωSH) 

� Geometry dominates relative speed (Relationship due to TR) 

2 Unknowns: TM and ωM with 2 Equations: 
� Transmission ratio links input and output speeds 
� Energy balance links speeds and torques 
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Example: DC Motor shaft 
T(ω): T( ) = TS ⋅

⎛
⎜⎜1−

ω ⎞
⎟⎟ω Motor torque-speed curve 

⎝ ωNL ⎠ T(ω)
P(ω) obtained from P(ω) = T(ω) y ω 

Speed at maximum power output: 

P( )  ( )  ω = T ω ⋅ω = TS ⋅⎜
⎛
ω −

ω 2 
⎟
⎞ ω 

⎜ ω ⎟
⎝ NL ⎠ P(ω


ωPMAX =
ω 

2 
NL 

PMAX


PMAX = TS ⋅
⎛
⎜
ωNL ⎞⎟

⎝ 4 ⎠


(ωNL , 0 ) 

( 0 , TS ) 

) 

ω 

Motor power curve 

ωPMAX 

(ωNL , 0 ) 
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Example: Screw driver shaft 
A = Motor shaft torque-speed curve 
What is the torque-speed curve for the screw driver? 

ω 

T(ω) 

A 

B 

C 

Train ratio = 1/81 

SCREW DRIVER SHAFT


Screw Driver Shaft 

MOTOR SHAFT 
TM, ωM 

TSH, ωSH 

GT-2 Electric 
Motor GT-1 

GEAR train # 1 GEAR train # 2 

System boundary 
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Example: Screw driver shaft 
D What is the power-speed curve for the screw driver? 

C 

E 

ω 

C = Motor shaft power curveP(ω) 

Train ratio = 1/81 

SCREW DRIVER SHAFT


Screw Driver Shaft 

MOTOR SHAFT 
TM, ωM 

TSH, ωSH 

GT-2 Electric 
Motor GT-1 

GEAR train # 1 GEAR train # 2 

System boundary 
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