MIT OpenCourseWare
|http://ocw.mit.edu

2.72 Elements of Mechanical Design

Spring 2009

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

Elements of

Mechanical Design
Lecture 12:

Belt, friction, gear drives

Schedule and reading assignment

Quiz

- Bolted joint qualifying Thursday March 19 ${ }^{\text {th }}$

Topics

- Belts
- Friction drives
- Gear kinematics

Reading assignment

- Read:

$$
14.1-14.7
$$

- Skim:

Rest of Ch. 14

Topic 1:

Belt Drives

Belt Drives

Why Belts?

- Torque/speed conversion
- Cheap, easy to design
- Easy maintenance
- Elasticity can provide damping, shock absorption

Image by dtwright on Flickr.

Keep in mind

- Speeds generally 2500-6500 ft/min
- Performance decreases with age

Image by v6stang on Flickr.

Belt Construction and Profiles

Many flavors

- Flat is cheapest, natural clutch
- Vee allows higher torques
- Synchronous for timing

Usually composite structure

- Rubber/synthetic surface for friction
- Steel cords for tensile strength

Belt Drive Geometry

Belt Drive Geometry

Contact Angle Geometry

$$
\theta_{1}=\pi-2 \sin ^{-1}\left(\frac{d_{2}-d_{1}}{2 d_{\text {center }}}\right) \quad \theta_{2}=\pi+2 \sin ^{-1}\left(\frac{d_{2}-d_{1}}{2 d_{\text {center }}}\right)
$$

Belt Geometry

$d_{\text {span }}=\sqrt{d_{\text {center }}^{2}-\left(\frac{d_{2}-d_{1}}{2}\right)^{2}}$

$$
L_{\text {belt }}=\sqrt{4 d_{\text {center }}^{2}-\left(d_{2}-d_{1}\right)^{2}}+1 / 2\left(d_{1} \theta_{1}+d_{2} \theta_{2}\right)
$$

Drive Kinematics

$$
v_{b}=\frac{d_{1}}{2} \omega_{1}=\frac{d_{2}}{2} \omega_{2}
$$

$$
\frac{d_{1}}{d_{2}}=\frac{\omega_{2}}{\omega_{1}}
$$

Elastomechanics

Elastomechanics \rightarrow torque transmission

- Kinematics \rightarrow speed transmission

Link belt preload to torque transmission

- Proceeding analysis is for flat/round belt

Free Body Diagram

Force Balance

Obtaining Differential Eq

Belt Tension to Torque

Let the difference in tension between the loose side $\left(F_{2}\right)$ and the tight side $\left(F_{1}\right)$ be related to torque (T)

$$
F_{1}-F_{2}=\frac{T}{d / 2}
$$

Solve the previous integral over contact angle and apply F_{1} and F_{2} as b.c.'s and then do a page of algebra:

$$
F_{\text {tension }}=\frac{T}{d} \frac{e^{\mu \theta_{\text {contact }}}+1}{e^{\mu \theta_{\text {contact }}}-1}
$$

$$
\begin{aligned}
& F_{1}=m\left(\frac{d}{2}\right)^{2} \omega^{2}+F_{\text {tension }} \frac{2 e^{\mu \theta_{\text {conact }}}}{e^{\mu \theta_{\text {connact }}}+1} \\
& F_{2}=m\left(\frac{d}{2}\right)^{2} \omega^{2}+F_{\text {tension }} \frac{2}{e^{\mu \theta_{\text {conact }}}+1}
\end{aligned}
$$

Practical Design Issues

Pulley/Sheave profile

- Which is right?

Manufacturer \rightarrow lifetime eqs

- Belt Creep (loss of load capacity)
- Lifetime in cycles

Idler Pulley Design

- Catenary eqs \rightarrow deflection to tension
- Large systems need more than 1

Images by|v6stang on Flickr.

Practice problem

Delta 15-231 Drill Press

- 1725 RPM Motor (3/4 hp)
- 450 to 4700 RPM operation
- Assume 0.3 m shaft separation
- What is max torque at drill bit?
- What size belt?
- Roughly what tension?

Topic 2:

Friction Drives

Friction Drives

Why Friction Drives?

- Linear \leftrightarrow Rotary Motion
- Low backlash/deadband
- Can be nm-resolution

Images removed due to copyright restrictions. Please see
|http://www.beachrobot.com/images/bata-football.jpg
|http://www.borbollametrology.com/PRODUCTOS1/Wenzel/
|WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg

Keep in mind

\square Preload \rightarrow bearing selection

- Low stiffness and damping
- Needs to be clean
- Low drive force

Friction Drive Anatomy

Motor and

Transmission/Coupling

Concerned with:
-Linear Resolution

- Output Force
-Max Roller Preload
Backup Rollers
-Axial Stiffness

Drive Kinematics/Force Output

Kinematics found from no slip cylinder on flat

$$
\begin{aligned}
& \Delta \delta_{\text {bar }}=\Delta \theta \cdot \frac{d_{\text {wheel }}}{2} \\
& v_{\text {bar }}=\omega_{\text {wheel }} \frac{d_{\text {wheel }}}{2}
\end{aligned}
$$

Force output found from static analysis

- Either motor or friction limited

$$
F_{\text {output }}=\frac{2 T_{\text {wheel }}}{d_{\text {wheel }}} \quad \text { where } F_{\text {output }} \leq \mu F_{\text {preload }}
$$

Maximum Preload

$E_{e}=\left(\frac{1-v_{\text {wheel }}^{2}}{E_{\text {wheel }}}+\frac{1-v_{\text {bar }}^{2}}{E_{\text {bar }}}\right)^{-1}$

$$
R_{e}=\left(\frac{1}{d_{\text {wheel }} / 2}+\frac{1}{r_{\text {crown }}}\right)^{-1}
$$

$$
a_{\text {contact }}=\left(\frac{3 F_{\text {preload }} R_{e}}{2 E_{e}}\right)^{\frac{1}{3}}
$$

Shear Stress Equation

$$
\tau_{\text {wheel }}=\frac{a_{\text {contact }} E_{e}}{2 \pi R_{e}}\left(\frac{1+2 v_{\text {wheel }}}{2}+\frac{2}{9} \cdot\left(1+v_{\text {wheel }}\right) \cdot \sqrt{2\left(1+v_{\text {wheel }}\right)}\right)
$$

$$
F_{\text {preload, } \max }=\frac{16 \pi^{3} \tau_{\max }^{3} R_{e}^{2}}{3 E_{e}^{2}\left(\frac{1+2 v_{\text {wheel }}}{2}+\frac{2}{9} \cdot\left(1+v_{\text {wheel }}\right) \cdot \sqrt{2\left(1+v_{\text {wheel }}\right)}\right)^{3}}
$$

For metals:
$\tau_{\max }=\frac{3 \sigma_{y}}{2}$

Axial Stiffness

$$
\begin{aligned}
& k_{\text {tangential }}=\frac{4 a_{e} E_{e}}{(2-v)(1+v)} \\
& k_{\text {shaft }}=\frac{3 \pi E d_{\text {shaft }}^{4}}{4 L^{3}} \\
& k_{\text {torsion }}=\frac{\pi G d_{\text {wheel }}^{4}}{32 L} \\
& k_{\text {bar }}=\frac{E A_{c, \text { bar }}}{L}
\end{aligned}
$$

Friction Drives

Proper Design leads to

- Pure radial bearing loads
- Axial drive bar motion only

Drive performance linked to motor/transmission

- Torque ripple
- Angular resolution

Images removed due to copyright restrictions. Please see
|http://www.borbollametrology.com/PRODUCTOS1/Wenzel/WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg

Topic 3:

Gear Kinematics

Gear Drives

Why Gears?

- Torque/speed conversion
- Can transfer large torques
- Can run at low speeds
- Large reductions in small package

Keep in mind

- Requires careful design
- Attention to tooth loads, profile

Image from|robbie1 on Flickr.

Image from jbardinphoto on Flickr.

Gear Types and Purposes

Spur Gears

- Parallel shafts
- Simple shape \rightarrow easy design, low $\$ \$ \$$
\square Tooth shape errors \rightarrow noise
- No thrust loads from tooth engagement

Helical Gears

- Gradual tooth engagement \rightarrow low noise
- Shafts may or may not be parallel
- Thrust loads from teeth reaction forces
- Tooth-tooth contact pushes gears apart

Gear Types and Purposes

Bevel Gears

- Connect two intersecting shafts
- Straight or helical teeth

Worm Gears

- Low transmission ratios
- Pinion is typically input (Why?)
\square Teeth sliding \rightarrow high friction losses

Rack and Pinion

\square Rotary \leftrightarrow Linear motion

- Helical or straight rack teeth

Tooth Profile Impacts Kinematics

Want constant speed output

- Conjugate action = constant angular velocity ratio
. Key to conjugate action is to use an involute tooth profile

Output speed of gear train

Instantaneous Velocity and Pitch

Model as rolling cylinders (no slip condition):

$$
\overrightarrow{\mathrm{v}}=\vec{\omega}_{1} \times \overrightarrow{\mathrm{r}}_{1}=\vec{\omega}_{2} \times \overrightarrow{\mathrm{r}}_{2} \rightarrow \frac{\omega_{1}}{\omega_{2}}=\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}
$$

Model gears as two pitch circles

\square Contact at pitch point

Instantaneous Velocity and Pitch

Meshing gears must have same pitch
$-N_{g}=\#$ of teeth, $D_{p}=$ Pitch circle diameter
Diametral pitch, P_{D} :
Circular pitch, P_{C} :

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=\frac{\mathrm{N}_{\mathrm{g}}}{\mathrm{D}_{\mathrm{p}}} \\
& \mathrm{P}_{\mathrm{C}}=\frac{\pi \mathrm{D}_{\mathrm{p}}}{\mathrm{~N}_{\mathrm{g}}}=\frac{\pi}{\mathrm{P}_{\mathrm{D}}}
\end{aligned}
$$

Drawing the Involute Profile

-Gear is specified by diametral pitch and pressure angle, Φ

Image removed due to copyright restrictions. Please see |http://upload.wikimedia.org/wikipedia/commons/c/c2/Involute_wheel.gif

$$
D_{B}=D_{P} \cos \Phi
$$

Drawing the Involute Profile

Base Circle
Pitch Point

$$
L_{n}=n \frac{D_{B}}{2} \Delta \theta
$$

Transmission Ratio for Serial Gears

Transmission ratio for elements in series: $\mathrm{TR}=($ proper sign $) \cdot \frac{\omega_{\text {out }}}{\omega_{\text {in }}}$
From pitch equation: $\mathrm{P}_{1}=\frac{N_{1}}{D_{1}}=\frac{N_{2}}{D_{2}}=P_{2} \longrightarrow \frac{D_{1}}{D_{2}}=\frac{N_{1}}{N_{2}}=\frac{\omega_{2}}{\omega_{1}}$
For Large Serial Drive Trains:

$$
T R=(\text { proper sign }) \cdot \frac{\text { Product of drivingeeth }}{\text { Productof driven teeh }}
$$

Transmission Ratio for Serial Gears

Serial trains:

$$
T R=(\text { proper sign }) \cdot \frac{\text { Product of driving teeth }}{\text { Product of driven teeth }}
$$

Example 1:

$$
T R=?
$$

Example 2:

Transmission Ratio for Serial Gears

Example 3: Integral gears in serial gear trains

- What is TR? Gear 1 = input and $5=$ output

$$
T R=(\text { proper sign }) \cdot \frac{\text { Product of driving teeth }}{\text { Product of driven teeth }}
$$

Gear-1
$\mathrm{N}_{1}=9$
Gear - 2
$N_{2}=38$

Gear - 3
$\mathrm{N}_{3}=9$

Gear - 4
$N_{4}=67$

$$
\text { Gear - } 5
$$

$$
N_{5}=33
$$

Planetary Gear Trains

Planetary gear trains are very common

- Very small/large TRs in a compact mechanism

Terminology:

Planetary Gear Train Animation

How do we find the transmission ratio?

Image removed due to copyright restrictions. Please see |http://www.cydgears.com.cn/products/Planetarygeartrain/ |planetarygeartrain.jpg

Planetary Gear Train TR

If we make the arm
Sun Gear stationary, than this is a serial gear train:
Ring Gear

$$
\begin{aligned}
& \frac{\omega_{r a}}{\omega_{\text {sa }}}=\frac{\omega_{\text {ring }}-\omega_{\text {arm }}}{\omega_{\text {sun }}-\omega_{\text {arm }}}=T R \\
& T R=-\frac{N_{\text {sun }}}{N_{\text {planet }}} \cdot \frac{N_{\text {planet }}}{N_{\text {ring }}}=-\frac{N_{\text {sun }}}{N_{\text {ring }}} \\
& \frac{\omega_{\text {pa }}}{\omega_{\text {sa }}}=\frac{\omega_{\text {planet }}-\omega_{\text {arm }}}{\omega_{\text {sun }}-\omega_{\text {arm }}}=T R \\
& T R=-\frac{N_{\text {sun }}}{N_{\text {planet }}}
\end{aligned}
$$

Planetary Gear Train Example

Case Study: Cordless Screwdriver

Given: Shaft $\mathrm{T}_{\mathrm{SH}}\left(\omega_{\mathrm{SH}}\right)$ find motor $\mathrm{T}_{\mathrm{M}}\left(\omega_{\mathrm{SH}}\right)$

- Geometry dominates relative speed (Relationship due to TR)

2 Unknowns: T_{M} and ω_{M} with 2 Equations:

- Transmission ratio links input and output speeds
- Energy balance links speeds and torques

Example: DC Motor shaft

$\mathrm{T}(\omega): \quad \mathrm{T}(\omega)=\mathrm{T}_{\mathrm{S}} \cdot\left(1-\frac{\omega}{\omega_{N L}}\right)$
$P(\omega)$ obtained from $P(\omega)=T(\omega) \cdot \omega$

Speed at maximum power output:

$$
\begin{aligned}
& \mathrm{P}(\omega)=\mathrm{T}(\omega) \cdot \omega=\mathrm{T}_{\mathrm{S}} \cdot\left(\omega-\frac{\omega^{2}}{\omega_{N L}}\right) \\
& \omega_{P M A X}=\frac{\omega_{N L}}{2} \\
& \mathrm{P}_{\mathrm{MAX}}=\mathrm{T}_{\mathrm{S}} \cdot\left(\frac{\omega_{N L}}{4}\right)
\end{aligned}
$$

Example: Screw driver shaft

$\mathbf{T}(\omega) \AA \quad \mathrm{A}=$ Motor shaft torque-speed curve

What is the torque-speed curve for the screw driver?

Train ratio $=1 / 81$
A

ω

Example: Screw driver shaft

SCREW DRIVER SHAFT
MOTOR SHAFT
$\mathrm{T}_{\mathrm{SH}}, \omega_{\mathrm{SH}}$

