MIT OpenCourseWare http://ocw.mit.edu

2.72 Elements of Mechanical Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.72

Elements of Mechanical Design

Lecture 12: Belt, friction, gear drives

Schedule and reading assignment

Quiz

□ Bolted joint qualifying Thursday March 19th

Topics

Belts

- Friction drives
- Gear kinematics

Reading assignment

• Read:

14.1 - 14.7

- Skim:
 - Rest of Ch. 14

Topic 1: Belt Drives

Belt Drives

Why Belts?

- □ Torque/speed conversion
- □ Cheap, easy to design
- □ Easy maintenance
- Elasticity can provide damping, shock absorption

Keep in mind

- Speeds generally 2500-6500 ft/min
- Performance decreases with age

Images removed due to copyright restrictions. Please see:

http://www.tejasthumpcycles.com/Parts/primaryclutch/3.35-inch-harley-Street-Belt-Drive.jpg http://www.al-jazirah.com.sa/cars/topics/serpentine_belt.jpg

Image by dtwright on Flickr.

Image by v6stang on Flickr.

Belt Construction and Profiles

Many flavors

- □ Flat is cheapest, natural clutch
- Vee allows higher torques
- Synchronous for timing

Usually composite structure

- Rubber/synthetic surface for friction
- □ Steel cords for tensile strength

Belt Drive Geometry

Belt Drive Geometry

Contact Angle Geometry

$$\theta_1 = \pi - 2\sin^{-1} \left(\frac{d_2 - d_1}{2d_{center}} \right)$$

$$\theta_2 = \pi + 2\sin^{-1} \left(\frac{d_2 - d_1}{2d_{center}} \right)$$

Belt Geometry

$$d_{span} = \sqrt{d_{center}^2 - \left(\frac{d_2 - d_1}{2}\right)^2} \quad L_{belt} = \sqrt{4d_{center}^2 - \left(d_2 - d_1\right)^2} + \frac{1}{2}\left(d_1\theta_1 + d_2\theta_2\right)$$

© Martin Culpepper, All rights reserved

Drive Kinematics

$$v_b = \frac{d_1}{2}\omega_1 = \frac{d_2}{2}\omega_2$$

$$\frac{d_1}{d_2} = \frac{\omega_2}{\omega_1}$$

Elastomechanics

$\textbf{Elastomechanics} \rightarrow \textbf{torque transmission}$

 $\hfill\square$ Kinematics \rightarrow speed transmission

Link belt preload to torque transmission

Proceeding analysis is for flat/round belt

Free Body Diagram

Force Balance

Obtaining Differential Eq

Belt Tension to Torque

Let the difference in tension between the loose side (F_2) and the tight side (F_1) be related to torque (T)

$$F_1 - F_2 = \frac{T}{\frac{d}{2}}$$

Solve the previous integral over contact angle and apply F_1 and F_2 as b.c.'s and then do a page of algebra:

$$F_{tension} = \frac{T}{d} \frac{e^{\mu\theta_{contact}} + 1}{e^{\mu\theta_{contact}} - 1}$$

$$F_{1} = m \left(\frac{d}{2}\right)^{2} \omega^{2} + F_{tension} \frac{2e^{\mu\theta_{contact}}}{e^{\mu\theta_{contact}} + 1}$$

$$Used \text{ to find stresses} \text{ in belt!!!}$$

$$F_{2} = m \left(\frac{d}{2}\right)^{2} \omega^{2} + F_{tension} \frac{2}{e^{\mu\theta_{contact}} + 1}}$$

F

Practical Design Issues

Pulley/Sheave profile

□ Which is right?

$Manufacturer \rightarrow lifetime \ eqs$

- □ Belt Creep (loss of load capacity)
- □ Lifetime in cycles

Idler Pulley Design

- $\hfill\square$ Catenary eqs \rightarrow deflection to tension
- Large systems need more than 1

Images by v6stang on Flickr.

Practice problem

Delta 15-231 Drill Press

- □ 1725 RPM Motor (3/4 hp)
- □ 450 to 4700 RPM operation
- □ Assume 0.3 m shaft separation
- □ What is max torque at drill bit?
- □ What size belt?
- Roughly what tension?

Images removed due to copyright restrictions. Please see http://www.rockler.com/rso_images/Delta/15-231-01-500.jpg

Topic 2: Friction Drives

Friction Drives

Why Friction Drives?

- $\Box \ Linear \leftrightarrow Rotary \ Motion$
- Low backlash/deadband
- □ Can be nm-resolution

Keep in mind

- \Box Preload \rightarrow bearing selection
- □ Low stiffness and damping
- Needs to be clean
- □ Low drive force

Images removed due to copyright restrictions. Please see http://www.beachrobot.com/images/bata-football.jpg http://www.borbollametrology.com/PRODUCTOS1/Wenzel/ WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg

Friction Drive Anatomy

Drive Kinematics/Force Output

Kinematics found from no slip cylinder on flat

Force output found from static analysis

Either motor or friction limited

$$F_{output} = \frac{2T_{wheel}}{d_{wheel}} \quad where \ F_{output} \le \mu F_{preload}$$

Maximum Preload

$$E_{e} = \left(\frac{1-v_{wheel}^{2}}{E_{wheel}} + \frac{1-v_{bar}^{2}}{E_{bar}}\right)^{-1} \qquad R_{e} = \left(\frac{1}{d_{wheel}} + \frac{1}{r_{crown}}\right)^{-1}$$
For metals:

$$\tau_{max} = \frac{3\sigma_{y}}{2}$$
Variable Definitions
$$a_{contact} = \left(\frac{3F_{preload}R_{e}}{2E_{e}}\right)^{\frac{1}{3}}$$
Shear Stress Equation

$$\tau_{wheel} = \frac{a_{contact}E_{e}}{2\pi R_{e}} \left(\frac{1+2v_{wheel}}{2} + \frac{2}{9} \cdot (1+v_{wheel}) \cdot \sqrt{2(1+v_{wheel})}\right)$$

$$F_{preload, \max} = \frac{16\pi^{3}\tau_{\max}^{3}R_{e}^{2}}{3E_{e}^{2} \left(\frac{1+2v_{wheel}}{2} + \frac{2}{9} \cdot (1+v_{wheel}) \cdot \sqrt{2(1+v_{wheel})}\right)^{3}}$$

Axial Stiffness

Friction Drives

Proper Design leads to

- Pure radial bearing loads
- □ Axial drive bar motion only

Drive performance linked to motor/transmission

- □ Torque ripple
- Angular resolution

Images removed due to copyright restrictions. Please see

http://www.borbollametrology.com/PRODUCTOS1/Wenzel/WENZELHorizontal-ArmCMMRSPlus-RSDPlus_files/rsplus.jpg

Topic 3: Gear Kinematics

Gear Drives

Why Gears?

- □ Torque/speed conversion
- Can transfer large torques
- □ Can run at low speeds
- □ Large reductions in small package

Keep in mind

- Requires careful design
- □ Attention to tooth loads, profile

Image from robbie1 on Flickr.

Image from jbardinphoto on Flickr.

Images removed due to copyright restrictions. Please see http://elecon.nlihost.com/img/gear-train-backlash-and-contact-pattern-checking.jpg http://www.cydgears.com.cn/products/Planetarygeartrain/planetarygeartrain.jpg

Gear Types and Purposes

Spur Gears

- Parallel shafts
- \Box Simple shape \rightarrow easy design, low \$\$\$
- \square Tooth shape errors \rightarrow noise
- No thrust loads from tooth engagement

Helical Gears

- $\hfill\square$ Gradual tooth engagement \rightarrow low noise
- Shafts may or may not be parallel
- Thrust loads from teeth reaction forces
- Tooth-tooth contact pushes gears apart

Gear Types and Purposes

Bevel Gears

- Connect two intersecting shafts
- Straight or helical teeth

Worm Gears

- Low transmission ratios
- Pinion is typically input (Why?)
- Teeth sliding \rightarrow high friction losses

Rack and Pinion

- \Box Rotary \leftrightarrow Linear motion
- Helical or straight rack teeth

Images from Wikimedia Commons, http://commons.wikimedia.org

Figure by MIT OpenCourseWare.

© Martin Culpepper, All rights reserved

Viscous damping, c

Tooth Profile Impacts Kinematics

Want constant speed output

- □ Conjugate action = constant angular velocity ratio
- □ Key to conjugate action is to use an involute tooth profile

Instantaneous Velocity and Pitch

Model as rolling cylinders (no slip condition):

$$\vec{\mathbf{v}} = \vec{\omega}_1 \times \vec{\mathbf{r}}_1 = \vec{\omega}_2 \times \vec{\mathbf{r}}_2 \longrightarrow \frac{\omega_1}{\omega_2} = \frac{\mathbf{r}_2}{\mathbf{r}_1}$$

Model gears as two pitch circles

□ Contact at pitch point

Instantaneous Velocity and Pitch

Meshing gears must have same pitch

 $-N_g = #$ of teeth, $D_p = Pitch$ circle diameter

- **Diametral pitch**, P_D:
- **Circular pitch**, P_c:

$$P_{D} = \frac{N_{g}}{D_{p}}$$
$$P_{C} = \frac{\pi D_{p}}{N_{g}} = \frac{\pi}{P_{D}}$$

Drawing the Involute Profile

•Gear is specified by diametral pitch and pressure angle, Φ

Images from Wikimedia Commons, http://commons.wikimedia.org

Image removed due to copyright restrictions. Please see http://upload.wikimedia.org/wikipedia/commons/c/c2/Involute_wheel.gif

$$D_B = D_P \cos \Phi$$

Drawing the Involute Profile

Transmission Ratio for Serial Gears

Transmission ratio for elements in series: $TR = (proper \ sign) \cdot \frac{\omega_{out}}{\omega_{in}}$

From pitch equation:
$$P_1 = \frac{N_1}{D_1} = \frac{N_2}{D_2} = P_2 \longrightarrow \frac{D_1}{D_2} = \frac{N_1}{N_2} = \frac{\omega_2}{\omega_1}$$

For Large Serial Drive Trains:

$$TR = (proper sign) \cdot \frac{\text{Product of driving}_{\text{teeth}}}{\text{Product of driven teach}}$$

Transmission Ratio for Serial Gears

Example 3: Integral gears in serial gear trains

□ What is TR? Gear 1 = input and 5 = output

Planetary Gear Trains

Planetary gear trains are very common

□ Very small/large TRs in a compact mechanism

Terminology:

Planetary Gear Train Animation

How do we find the transmission ratio?

Image removed due to copyright restrictions. Please see http://www.cydgears.com.cn/products/Planetarygeartrain/ planetarygeartrain.jpg

Planetary Gear Train TR

Planetary Gear Train Example

Case Study: Cordless Screwdriver

Given: Shaft T_{SH} (ω_{SH}) find motor T_M (ω_{SH})

Geometry dominates relative speed (Relationship due to TR)

2 Unknowns: T_M and ω_M with 2 Equations:

- Transmission ratio links input and output speeds
- Energy balance links speeds and torques

Example: DC Motor shaft

**T(
$$\omega$$
):** T(ω) = T_S $\cdot \left(1 - \frac{\omega}{\omega_{NL}}\right)$

P(ω) obtained from P(ω) = T(ω) • ω

Speed at maximum power output:

$$P(\omega) = T(\omega) \cdot \omega = T_{S} \cdot \left(\omega - \frac{\omega^{2}}{\omega_{NL}}\right)$$

$$\omega_{PMAX} = \frac{\omega_{NL}}{2}$$

$$P_{MAX} = T_{S} \cdot \left(\frac{\omega_{NL}}{4}\right)$$

Example: Screw driver shaft

Example: Screw driver shaft

